No Significant Effect of Prefrontal tDCS on Working Memory Performance in Older Adults

Improved working memory is why many of us are interested in tDCS. Here’s another study showing no effect. Looks like a good study, though it’s a single-session of tDCS. Of late I’ve noticed more studies targeting working memory using the N-back test to measure. I’m hopeful a protocol will be discovered (i.e. a different montage, dosage, or perhaps tACS) that does improve working memory.

Transcranial direct current stimulation (tDCS) has been put forward as a non-pharmacological alternative for alleviating cognitive decline in old age. Although results have shown some promise, little is known about the optimal stimulation parameters for modulation in the cognitive domain. In this study, the effects of tDCS over the dorsolateral prefrontal cortex (dlPFC) on working memory performance were investigated in thirty older adults. An N-back task assessed working memory before, during and after anodal tDCS at a current strength of 1mA and 2mA, in addition to sham stimulation. The study used a single-blind, cross-over design. The results revealed no significant effect of tDCS on accuracy or response times during or after stimulation, for any of the current strengths. These results suggest that a single session of tDCS over the dlPFC is unlikely to improve working memory, as assessed by an N-back task, in old age.

Source: No Significant Effect of Prefrontal tDCS on Working Memory Performance in Older Adults

A technical guide to tDCS, and related non-invasive brain stimulation tools | Clinical Neurophysiology

Many of the leading tDCS researchers contribute to this Open Access article on clinical application of transcranial electrical stimulation (tES) techniques. Read it online, or download the pdf. (HatTip to Reddit user gi67)

  1. 1. Introduction
  2. 2. Transcranial direct current stimulation
    1. 2.1. Selecting and preparing electrodes and contact medium
    2. 2.2. Selecting and preparing electrode placement
    3. 2.3. Selecting a stimulation protocol
    4. 2.4. Use of blinding and sham
    5. 2.5. Safety versus tolerability
    6. 2.6. Considerations for transcutaneous spinal DC stimulation (tsDCS)
    7. 2.7. Considerations for cerebellar tDCS
      1. 2.7.1. Targeting the whole cerebellum
      2. 2.7.2. Targeting the cerebellar hemispheres
    8. 2.8. Selecting a stimulator
  3. 3. Transcranial alternating current stimulation (tACS)
    1. 3.1. Selecting tACS electrode placement
    2. 3.2. Selecting experimental design
    3. 3.3. Selecting stimulation parameters
    4. 3.4. Transcranial random noise stimulation (tRNS)
  4. 4. Monitoring physiological effects of tES
    1. 4.1. Monitoring physiological effects of tES with TMS
      1. 4.1.1. Monitoring of tES-induced motor cortex plasticity
    2. 4.2. Monitoring physiological effects of tES with electroencephalography (EEG) and event-related potentials (ERPs)
      1. 4.2.1. Selecting an approach
      2. 4.2.2. Integrating tES and EEG electrodes
      3. 4.2.3. Recording EEG during tES
    3. 4.3. Monitoring physiological effects of tES with magnetic resonance imaging (MRI) and magnetic resonance spectroscopy (MRS)
      1. 4.3.1. Integration of tDCS with MR
      2. 4.3.2. Considerations for concurrent MR acquisition
      3. 4.3.3. Other considerations for tDCS integrated with MR
  5. 5. Monitoring functional effects of tES
    1. 5.1. Monitoring functional effects of tES in healthy subjects
    2. 5.2. Monitoring functional effects of tES in patients
  6. 6. tDCS/tACS/tRNS in animal preparations
    1. 6.1. DC-, AC-, RN-induced membrane polarization
    2. 6.2. What can we learn from in vitro experiments?
  7. 7. tDCS and models of electric current through the brain
  8. 8. tES ethics
    1. 8.1. Education and training
    2. 8.2. Settings and procedures
    3. 8.3. Patient/subject selection
    4. 8.4. Patient/subject education and informed consent
  9. 9. Concluding remarks
  10. References

How Should We Regulate Those Brain-Zapping Gadgets That Promise to Boost Your Memory? | Slate

Anna Wexler writes about her recent paper in Slate.

Last month, the FDA held a public workshop on this topic. (I spoke on one of the panels, though I have no financial interests in these products.) Based on the discussion paper released ahead of the workshop, it seems that the agency intends to regulate these devices—it just hasn’t quite figured out how to do so. But although the FDA may have the expertise to regulate these devices, the idiosyncrasies of medical device law—namely, the complications regarding “intended use” claims—may not make this the best option, especially given the recent entrance to the market of devices that make no claims at all and instead bill themselves as “direct current sources.” The situation may require a novel solution—such as collaboration between the FDA and CPSC or the involvement of a third party, such as the National Academy of Medicine—to ensure the construction of a coherent framework that best encompasses devices on the market now and anticipates the complex issues that may arise in the future.

Source: How Should We Regulate Those Brain-Zapping Gadgets That Promise to Boost Your Memory?