Effect of anatomical variability on electric field characteristics of tES

A realistic head modeling study

Zhi-De Deng, Ph.D.
Noninvasive Neuromodulation Unit
Experimental Therapeutics & Pathophysiology Branch
National Institute of Mental Health, NIH
Brain stimulation landscape

Modified from Deng et al., Curr Opin Neurobiol, 2015
ECT in a nutshell

- Pulse generator
- Scalp electrodes
- Stimulus
- Electric field in brain
- Seizure
- Changes in brain activity/connectivity
Quasistatic approximation

\[E(\mathbf{r}, t) = k(\mathbf{r}) I_E(t) \]

spatial \hspace{1cm} temporal

Bosetti et al., J Neural Eng, 2008; Deng et al., J Neural Eng, 2011
Room for improvement: electrode placement

Cerletti 1930s

Modern day bilateral ECT

limited options and imprecise
Room for improvement: current amplitude

fixed

800 mA or 900 mA

(... and probably way too high!)
Here’s the problem...

(a) ECT

(b) MST

<table>
<thead>
<tr>
<th>Fixed</th>
<th>Scalp</th>
<th>Skull</th>
<th>Brain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z_{scalp}</td>
<td>Z_{skull}</td>
<td>Z_{brain}</td>
<td>E_{brain}</td>
</tr>
</tbody>
</table>
“For constant-current, brief-pulse stimulation, we suggest that, in general clinical practice, the range of the threshold for seizure elicitation may be as wide as 40-fold.”
Variability in Response to Transcranial Direct Current Stimulation of the Motor Cortex

Sarah Wiethoff 1,2, Masashi Hamada 4,5,6, John C. Rothwell 8

1 Self-ham Department of Motor Neuroscience and Movement Disorders, UCL Institute of Neurology, Queen Square, London WC1N 3BG, UK
2 Department of Neurology, Graduate School of Medicine, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-8655, Japan

Abstract

Background: Responses to a number of different plasticity-inducing brain stimulation protocols are highly variable. However, there is little data available on the variability of response to transcranial direct current stimulation (tDCS).

Objective: We tested the effects of tDCS over the motor cortex to corticospinal excitability. We also examined whether an individual's response could be predicted from measurements of onset latency of motor evoked potential (MEP) following stimulation with different orientations of monophasic transcranial magnetic stimulation (TMS).

Methods: Fifty-three healthy subjects participated in a crossover-design. Baseline latency measurements with different coil orientations and MEPs were recorded from the first dorsal interosseous muscle prior to the application of 10 min of 2 mA tDCS (0.057 mA/cm²). Thirty MEPs were measured every 5 min for up to half an hour after the intervention to assess after-effects on corticospinal excitability.

Results: Anodal tDCS at 2 mA facilitated MEPs whereas there was no significant effect of 2 mA cathodal TDCS. A two-step cluster analysis suggested that approximately 50% individuals had only a minor, or no response to TDCS whereas the remainder had a facilitatory effect to both forms of stimulation. There was a significant correlation between the latency difference of MEPs (anterior—posterior stimulation) and the response to anodal, but not cathodal TDCS.

Conclusion: The large variability in response to these TDCS protocols is in line with similar studies using other forms of non-invasive brain stimulation. The effects highlight the need to develop more robust protocols, and understand the individual factors that determine responsiveness.

"The effects of tDCS are highly variable, as in other plasticity-inducing protocols, with around 50% of individuals having poor or absent responses."
Classic spherical head model

The human head was modeled as a sphere consisting of concentric shells: scalp, skull, CSF, gray matter, and white matter.

TABLE I

NOMINAL HEAD MODEL PARAMETERS

<table>
<thead>
<tr>
<th>Anatomical parameter</th>
<th>Human</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Female</td>
</tr>
<tr>
<td>Head diameter (cm)</td>
<td>17.3</td>
</tr>
<tr>
<td>Scalp thickness (mm)</td>
<td>5.60</td>
</tr>
<tr>
<td>Skull thickness (mm)</td>
<td>7.08</td>
</tr>
<tr>
<td>CSF thickness (mm)</td>
<td>3.00</td>
</tr>
<tr>
<td>Gray matter thickness (mm)</td>
<td>3.00</td>
</tr>
<tr>
<td>White matter thickness (mm)</td>
<td>67.8</td>
</tr>
<tr>
<td>Brain volume (cm3)</td>
<td>1486.6</td>
</tr>
<tr>
<td>Scalp conductivity (S m$^{-1}$)</td>
<td>0.33</td>
</tr>
<tr>
<td>Skull conductivity (S m$^{-1}$)</td>
<td>0.0083</td>
</tr>
<tr>
<td>CSF conductivity (S m$^{-1}$)</td>
<td>1.79</td>
</tr>
<tr>
<td>Gray matter conductivity (S m$^{-1}$)</td>
<td>0.33</td>
</tr>
<tr>
<td>White matter conductivity (S m$^{-1}$)</td>
<td>0.14</td>
</tr>
</tbody>
</table>

these individual variations are consistent in ranking across montages (S3).

Differences across subjects were significant as across montages. Implications of these variations are consistent in ranking across montages.
Individual MRI

Tissue segmentation

Electrode CAD & meshing

Finite element solver

Electric field analysis
Maximum induced E field (V/m)

Probability density

$513 \pm 113 \text{ V/m}$
Electric field and hippocampal plasticity

Deng and Abbott, ACNP, 2016
Hippocampal plasticity in ECT

Joshi et al., Biol Psychiatr, 2016
Controlling Stimulation Strength and Focality in Electroconvulsive Therapy via Current Amplitude and Electrode Size and Spacing Comparison With Magnetic Seizure Therapy

Zhi-De Deng, PhD,** Sarah H. Lisanby, MD,** and Angel V. Peterchev, PhD*§||

Objective: Understanding the relationship between the stimulus parameters of electroconvulsive therapy (ECT) and the electric field characteristics could guide studies on improving risk–benefit ratios. We aimed to determine the effect of current amplitude and electrode size and spacing on the ECT electric field characteristics, compare ECT focality with magnetic seizure therapy (MST), and evaluate stimulus individualization by current amplitude adjustment.

Methods: Electroconvulsive therapy and double-cone-coil MST electric field was simulated in a 5-shell spherical human head model. A range of ECT electrode diameters (2–7 cm), spacing (1–2 cm), and current amplitudes (0.5–900 mA) was explored. The head model parameters were varied to examine the stimulus current adjustment required to compensate for interindividual anatomical differences.

Results: By reducing the electrode size, spacing, and current, the ECT electric field can be more focal and superficial without increasing scalp current density. By appropriately adjusting the electrode configuration and current, the ECT electric field characteristics can be made to approximate those of MST within 13%. Most electric field characteristics in ECT are more sensitive to head anatomy variation than in MST, especially for close electrode spacing. Nevertheless, ECT current amplitude adjustment of less than 70% can compensate for interindividual anatomical variability.

Conclusions: The strength and focality of ECT can be varied over a wide range by adjusting the electrode size, spacing, and current. If desirable, ECT can be made as focal as MST while using simpler stimulation equipment. Current amplitude individualization can compensate for interindividual anatomical variability.

Key Words: electroconvulsive therapy, magnetic seizure therapy, electric field, focality, model

(J ECT 2013;29: 325–335)

Electroconvulsive therapy (ECT) is the most effective treatment for severe depression due to its powerful and rapid therapeutic action in patients who are otherwise treatment resistant. However, ECT can cause amnesia and other adverse effects, which impede its broader application. Various alterations of ECT technique have been introduced to achieve more focal stimulation, based on the theory that increased focality of the electrical stimulus and the resultant seizure may be a means of reducing adverse effects.

Among the approaches that make ECT more focal, electrode placement has been the subject of most intensive investigation. The shift from bilateral (BL) to right unilateral (RUL) electrode placement is representative of the move toward more focal electrical stimulus delivery, based on the assumption that by reducing the spacing between the electrodes and placing them over the right hemisphere, the direct stimulation and seizure intensity in the left hemisphere can be reduced, thereby sparing verbal and memory functions. Indeed, with ammottically dosed electrical stimulus,
Application of current amplitude individualization

Zhi, what about uncertainties in tissue conductivity?
Model validation and parameter estimation

Vöröslakos et al., 2014
Measure E field in cadaver

Opitz et al., 2016
Measure induced voltage in NHP

Wolters et al., 2006
Tissue conductivity & anisotropy effects on EEG
Take home

§ A major source of variability in clinical/behavioral outcome is inter-individual differences in head anatomy and tissue electric properties

§ Some of this anatomical variability can be compensated with proper individualized dosing strategies

§ Despite uncertainties in parameters, computational models are improving and becoming more ubiquitous
“Essentially, all models are wrong, but some are useful.”

~George E. P. Box