Remotely-Supervised (RS) tDCS: Providing Standardized, “At-home” Treatment for Clinical Trials

Leigh Charvet PhD
NYU School of Medicine
NYU Langone MS Comprehensive Care Center
Large-scale studies are needed

• Faster recruitment of larger sample sizes
 • Adequate power
 • Individual differences in treatment response

• Extended treatment time
 • Cumulative effect of stimulation
 • Optimal number of sessions for lasting benefit
 • Pairing with rehabilitation
Remote delivery to expand tDCS trial designs

• tDCS safe and transportable – ideal for access away from clinic

• Most patients cannot repeatedly travel to clinic for consecutive treatments
 • Work and family responsibilities
 • Caregiver burden
 • Limited accessible transportation
 • tDCS clinic may be far away
 • Costs for travel, lost wages

• Those with greatest obstacles may be the most important to study
Maintaining trial standards through real-time supervision

• Consensus guidelines*:
 • Training
 • Research staff, participants/caregivers
 • Initial and ongoing assessment of participant’s capability
 • Supportive training procedures and materials
 • Simple and fail-safe electrode preparation and positioning
 • Strict dose control for each session
 • Ongoing monitoring
 • Compliance, adverse effects

• Self-directed use is not advisable
 • Safety concerns
 • Results are not consistent or reproducible
 • Need objective measurement of treatment effect

Remotely-supervised ("RS") protocol* to pair with telerehabilitation

• Cognitive remediation in adults living with multiple sclerosis (MS)
 • Based on trial experience with at-home cognitive training (n=135)
 • Met strong demand, rapid recruitment, high compliance
 • tDCS may enhance or potentiate benefit
 • tDCS may also ameliorate other frequent MS symptoms (mood, fatigue, motor, pain)

• Developed in collaboration with Drs. Marom Bikson (CCNY) and Abhishekh Datta (Soterix) and their teams

*Kasschau, M., Sherman, K., Haider, L., Frontario, A., Shaw, M., Datta, A., Bikson, M., Charvet, L.
RS-tDCS Approach: 1.) Device (Soterix Mini-CT)

• Pre-programmed devices
 • Single-use “unlock code” for predetermined “dose”
 • Program session type (active or sham), stimulation time and dose
 • Generates a series of one-time use activation codes

• Design
 • Large number pad, simple interface
 • Now rechargeable - avoids sending home batteries
 • “Abort” and “pause” options for additional safety
 • Records session completion information

• Governance through videoconferencing
 • Visual confirmation and safety checklist completed by study technician before code is given to participant
 • Impedance must be no more than moderate in order for code to work
 • Correct headset/electrode placement
CODE VERIFICATION

You will need DOSE CODE from the ADMINISTRATOR to proceed.

DOSE CODE: 22123

STIMULATION

CONTACT QUALITY:
Please put on your EASystrap and EASypads as instructed.
Contact Quality
OPTIMAL
* BACK # OK

STIMULATION PAUSED

CONTACT QUALITY:
Please adjust the EASystrap and EASypads to proceed.
Contact Quality
MODERATE
O ABORT # RESUME

STIMULATION PAUSED

CONTACT QUALITY:
Please adjust the EASystrap and EASypads to proceed.
Contact Quality
CRITICAL
O ABORT # RESUME

STIMULATION

DEVICE LOCKED
UNLOCK TIME: 5 PM

* BACK # ENTER CODE

STIMULATION

STATUS:
STIMULATING

Stimulation Complete!
Device will now shut down!

0 ABORT
RS-tDCS Approach: 2) Headset

• “Cap”-like placement for simple positioning
 • Markers for guidance in placement

• Elasticized headband

• Uniform electrode placement
 • Fixed electrode positions with self-load
 • Clear electrode polarity labeling (fixed wiring)

• Easy electrode preparation
 • Individually-packaged pre-moistened sponges
 • Perforated for easy opening
 • Snap connectors (vs. button tabs)
RS-tDCS Approach: 3) Computer

- Low-cost laptop computers
 - Large screens
 - Adaptive mouse (if needed)
 - Background rating scales

- Connected in real-time
 - VSee
 - HIPAA-compliant
 - Low-bandwidth
 - Cell-phone backup

- Remote control of computer
 - TeamViewer

- Minimum technical requirements
 - Connect to Wi-Fi
 - Open computer

- Cognitive training and assessment
Procedures- Screening and Baseline

- Aptitude (computer and tDCS)
- tDCS tolerability test (60 second ramp up/down)
- Device training for at-home use

Exclude for seizures, skin conditions, severe cognitive or visual impairment

If participant does not tolerate target does, second test for lower dose
Procedures - Remote Sessions

- Go/No Go for each step
- Visual confirmation by study technician
- Safety and tolerability
- Compliance
Feasibility Study in Multiple Sclerosis (MS) – 10 sessions x 1.5 mA (open-label)
RS-tDCS in MS is feasible*

• EDSS 1.0-8.0 (n=26, n=8 with proxy)
 • Included those with severe neurologic impairment

• 247/260 sessions completed (96%), no session discontinued once started

• 22/26 patients completed all 10 sessions (85%)
 • Reasons for discontinuation not related to treatment

RS-tDCS with Sham-Control: 20 Sessions

- **Screening and Clearance**: Randomization to Active or Sham
- **Baseline + Device training, tolerability testing (in clinic)**: tDCS session 1
- **Remote Sessions**: tDCS 2-20
- **Study End Assessment (in clinic)**
- **Additional 10 open-label active sessions (for those in sham)**
Frequency of side effects reported with RS-tDCS

% Sessions with reported symptom(s)

- Skin tingling
- Skin itching
- Skin burning
- Nausea
- Headache
- Facial muscle twitching
- Blurred vision
- Localized head pain
- Forgetfulness
- Difficulty concentrating
- Dizziness
- Difficulty breathing

- Active, 2.0 mA
- Active, 1.5 mA
- Sham
RS-tDCS provides access

• Overcoming barriers to treatment access
 • Reaching participants who are target treatment recipients
 • Greater disability
 • Other limitations in treatment access

• In less than one year of active recruiting, >610 sessions
 • MS studies published to date (n=8) = 671 sessions
 • 20 treatment sessions
Next steps for RS-tDCS: Ongoing studies

• Extending to randomize to active or sham condition for clinical trials
 • 20 sessions x 1 month
 • 10 open-label sessions for those in sham condition

• Extending to other conditions
 • Ongoing feasibility trial in Parkinson’s disease

• Extending to other telerehabilitation/telepsychology

• Extending to new montages
 • M1-SO to pair with motor training
The Potential of RS-tDCS: Scalability

• Protocol designed to be “fail-safe”
 • Low burden on participant to use equipment
 • Operator control

• Generalizable
 • A range of symptoms across varying conditions
 • Paired with telerehabilitation/telepsychology

• Allows for large scale studies
 • Rapid recruitment
 • Extended treatment
 • Limited only by devices and study technicians
A team effort!

- Mike Shaw
- Kai Sherman
- Bryan Dobbs
- William Pau
- Natalie Pawlak
- Margaret Kasschau
- Dr. Lauren Krupp