

Remotely-Supervised (RS) tDCS: Providing Standardized, "At-home" Treatment for Clinical Trials

Leigh Charvet PhD NYU School of Medicine NYU Langone MS Comprehensive Care Center

Large-scale studies are needed

•Faster recruitment of larger sample sizes

Adequate power

Individual differences in treatment response

- •Extended treatment time
 - Cumulative effect of stimulation
 - Optimal number of sessions for lasting benefit
 - Pairing with rehabilitation

Remote delivery to expand tDCS trial designs

- tDCS safe and transportable ideal for access away from clinic
- Most patients cannot repeatedly travel to clinic for consecutive treatments
 - •Work and family responsibilities
 - •Caregiver burden
 - •Limited accessible transportation
 - •tDCS clinic may be far away
 - •Costs for travel, lost wages
- Those with greatest obstacles may be the most important to study

Maintaining trial standards through real-time supervision

- Consensus guidelines*:
 - •Training
 - Research staff, participants/caregivers
 - Initial and ongoing assessment of participant's capability
 - Supportive training procedures and materials
 - Simple and fail-safe electrode preparation and positioning
 - Strict dose control for each session
 - Ongoing monitoring
 - Compliance, adverse effects
- Self-directed use is not advisable
 - Safety concerns
 - Results are not consistent or reproducible
 - Need objective measurement of treatment effect

*Charvet, Kasschau, Datta, Knotkova, Stevens, Alonzo, Loo, Krull,Bikson. <u>Remotely-supervised transcranial direct current stimulation</u> (tDCS) for clinical trials: guidelines for technology and protocols. Frontiers in Systems Neuroscience, March 2015

Remotely-supervised ("RS") protocol* to pair with telerehabilitation

- Cognitive remediation in adults living with multiple sclerosis (MS)
 - Based on trial experience with at-home cognitive training (n=135)
 - Met strong demand, rapid recruitment, high compliance
 - tDCS may enhance or potentiate benefit
 - tDCS may also ameliorate other frequent MS symptoms (mood, fatigue, motor, pain)
- Developed in collaboration with Drs. Marom Bikson (CCNY) and Abhishek Datta (Soterix) and their teams

*Kasschau, M., Sherman, K., Haider, L., Frontario, A., Shaw, M., Datta, A., Bikson, M., Charvet, L. <u>A Protocol for the Use of Remotely-Supervised Transcranial Direct Current Stimulation (tDCS)</u> <u>in Multiple Sclerosis (MS).</u> J. Vis. Exp.(106), e53542, doi:10.3791/53542 (2015).

RS-tDCS Approach: 1.) Device (Soterix Mini-CT)

- Pre-programmed devices
 - Single-use "unlock code" for predetermined "dose"
 - Program session type (active or sham), stimulation time and dose
 - Generates a series of one-time use activation codes

• Design

- Large number pad, simple interface
- Now rechargeable- avoids sending home batteries
- "Abort" and "pause" options for additional safety
- Records session completion information
- Governance through videoconferencing
 - Visual confirmation and safety checklist completed by study technician before code is given to participant
 - Impedance must be no more than moderate in order for code to work
 - Correct headset/electrode placement

O ABORT

NYU Langone MEDICAL CENTER

RS-tDCS Approach: 2) Headset

- "Cap"-like placement for simple positioning
 Markers for guidance in placement
- Elasticized headband
- Uniform electrode placement
 - Fixed electrode positions with self-load
 - Clear electrode polarity labeling (fixed wiring)
- Easy electrode preparation
 - Individually-packaged pre-moistened sponges
 - Perforated for easy opening
 - Snap connectors (vs. button tabs)

RS-tDCS Approach: 3) Computer

- Low-cost laptop computers
 - Large screens
 - Adaptive mouse (if needed)
 - Background rating scales
- Connected in real-time
 - •VSee
 - HIPAA-compliant
 - Low-bandwith
 - Cell-phone backup
- Remote control of computer
 - TeamViewer
- Minimum technical requirements
 - Connect to Wi-Fi
 - Open computer

NYU Langone

Cognitive training and assessment

Procedures- Screening and Baseline

MYU Langone

12

Procedures- Remote Sessions

RS-tDCS in MS is feasible*

•EDSS 1.0-8.0 (n=26, n=8 with proxy)

- Included those with severe neurologic impairment
- •247/260 sessions completed (96%), no session discontinued once started
- •22/26 patients completed all 10 sessions (85%)
 •Reasons for discontinuation not related to treatment

*Kasschau, Reisner, Sherman, Bikson, Datta, Charvet. <u>Transcranial direct current stimulation is feasible for remotely</u> <u>supervised home delivery in multiple sclerosis</u>. Neuromodulation, 2015.

Frequency of side effects reported with RS-tDCS

RS-tDCS provides access

- Overcoming barriers to treatment access
 - Reaching participants who are target treatment recipients
 - Greater disability
 - Other limitations in treatment access
- In less than one year of active recruiting, >610 sessions
 - MS studies published to date (n=8) = 671 sessions
 - 20 treatment sessions

Next steps for RS-tDCS: Ongoing studies

- Extending to randomize to active or sham condition for clinical trials
 - •20 sessions x 1 month
 - 10 open-label sessions for those in sham condition
- Extending to other conditions
 - Ongoing feasibility trial in Parkinson's disease
- Extending to other telerehabilitation/telepsychology
- Extending to new montages
 M1-SO to pair with motor training

The Potential of RS-tDCS: Scalability

- Protocol designed to be "fail-safe"
 - Low burden on participant to use equipment
 - Operator control
- Generalizable
 - A range of symptoms across varying conditions
 - Paired with telerehabilitation/telepsychology
- Allows for large scale studies
 - Rapid recruitment
 - Extended treatment
 - Limited only by devices and study technicians

A team effort!

- Mike Shaw
- Kai Sherman
- Bryan Dobbs
- William Pau
- Natalie Pawlak
- Margaret Kasschau
- Dr. Lauren Krupp

Kai Sherman, MSED

Brvan Dobbs

Mike Shaw

Natalie Pawlak

William Pau

