

## Technical aspects of transcranial electrical stimulation:

Hardware, devices, and procedures

### Adam J. Woods, PhD

University of Florida
Center for Cognitive Aging and Memory
McKnight Brain Institute
September 29th, 2016
Bethesda, MD



### Disclosures

 Adam J. Woods, PhD does not have any financial arrangements or affiliations with any commercial entities whose products, research or services may be discussed in these materials.

# Technical aspects of transcranial electrical stimulation

### **Outline**

Part 1: Devices

Part 2: Electrode Hardware

Part 3: Procedures

Woods et al. (2016). A technical guide to tDCS, and related non-invasive brain stimulation tools. *Clinical Neurophysiology*, 127: 1031-1048.

# Technical aspects of transcranial electrical stimulation

#### **Outline**

Part 1: Devices

Part 2: Electrode Hardware

Part 3: Procedures

### Low Current tES Devices

- Wide range of marketed devices
  - Currently a limited set of certified low current tESstimulators available
  - Important to use a professionally engineered medical device designed to deliver current to the head/spine











## Key features to look for:

- Constant and controlled current delivery
  - Exactness of current delivered is critical
  - Voltage controlled (constant voltage) devices are not appropriate for tES
- Reasonable and safe current ceiling
  - Devices do not need to be able to stimulate at 1 amp for tES
- Blinding and sham features
  - For research or clinical trial applications
- Current ramp function
- Programmable (if desired)
  - Current intensity, duration of stimulation, etc.
- Impedance/contact quality
- Other safety features
  - Battery operation, low battery warning, abort function, etc.

# Technical aspects of transcranial electrical stimulation

#### **Outline**

Part 1: Devices

Part 2: Electrode Hardware

Part 3: Procedures

### Electrode Hardware

- Conventional Electrodes
  - Electrode Assembly
  - Electrode Size
  - Electrode Type
  - Wires



- Electrode Assembly
- Electrode Size
- Electrode Type
- Wires







### Electrode Hardware

- Conventional Electrodes
  - Electrode Assembly
  - Electrode Size
  - Electrode Type
  - Wires



- Electrode Assembly
- Electrode Size
- Electrode Type
- Wires







## **Conventional Electrode Assembly**

• Electrode

Sponge

Wire







### **Conventional Electrode**

- Biocarbon Electrodes
  - Most common



## Conventional: Sponge Size

- A variety of sizes
  - -5x5 cm
  - -5x7 cm
  - -5x10 cm
  - -10x10 cm
  - Other sizes available



- Why different sizes?
  - Control of current concentration/intensity
  - Method for altering the "general" focality of current delivery

## Sponge/Electrode Integrity

Biocarbon Electrodes and Sponges

- Conventional 1x1
  - Rubber electrodes
  - Sponge pads
    - Single use
    - Multi-use



### Electrode Wires

 Manufacturer specific device connection

 Common electrode connection terminal

 Careful to remove by grasping at terminal, not the wire







### **Electrode Hardware**

- Conventional Electrodes
  - Electrode Assembly
  - Electrode Size
  - Electrode Type
  - Wires



- Electrode Assembly
- Electrode Size
- Electrode Type
- Wires







## HD or multi-electrode assembly

Electrodes

Electrode holders





## **Electrode Type**

- Ag/AgCl Electrode
  - Must be replaced after two uses in center position of "4x1 montage"







## Ag/AgCl Electrode Integrity

- Chipped Ag/AgCl electrodes
  - Do not use
  - Can also break during insertion holder





- Ag/AgCl electrodes must be replaced after certain number of uses
  - Excessive corrosion/blackening of electrodes should cue replacement
  - An electrode "use log" is helpful for tracking number of uses in the center position

### Electrode Holder

- Plastic Holder for positioning of electrode
- Fits within standard EasyCap or other similar EEG-style caps





### Wires

- Fragile
- Highest point of failure
- Methods for reducing wire strain
  - Wrapping wires around electrode holder
  - Clipping wire junction to the participants shirt or chair







# Technical aspects of transcranial electrical stimulation

#### **Outline**

Part 1: Devices

Part 2: Electrode Hardware

Part 3: Procedures

### Procedures

- Conventional Application
  - Contact Medium
  - Electrode Location
  - Electrode Orientation
  - Electrode Drift
  - Scalp Contact
  - Impedance
- Ag/AgCl Application
  - Electrode Location
  - Contact Medium
  - Impedance







### Procedures

- Conventional Application
  - Contact Medium
  - Electrode Location
  - Electrode Orientation
  - Electrode Drift
  - Scalp Contact
  - Impedance
- Ag/AgCl Application
  - Electrode Location
  - Contact Medium
  - Impedance







### Contact Medium: Saline: 0.9% Solution

- Proper saturation of sponge
  - ~8 mL recommended for 5 x 7 cm
  - Eye dropper gives best control over delivery (~4 mL/side)
- Do NOT over saturate
  - Bridging
- Do <u>NOT</u> apply stimulation to a dry sponge
  - Sponges designed to hold saturation ~20 minutes
- NEVER use water







### **Electrode Paste**

- Alternative to Saline
  - Pros
    - Stability over time
    - Less likely to "drip"
    - Sensation differences
      - Decreased sensation with 3+mm layer



#### Cons

- More difficult to obtain low impedance levels
  - Necessary to massage paste into scalp area prior to placing paste covered electrode
- Thick (~3mm) coating of paste must be maintained
  - Easy to press electrode such that paste thickness in decreased

### **Electrode Location**

### International 10 – 20 Measurement System





### **Electrode Drift**

- When using straps to secure electrodes
  - Straps may drift over time if not properly secured
  - Fine or oily hair have higher rate of drift
  - Use the heads anatomy to your advantage
  - Use cross-straps and chin straps if needed on a particular montage
  - Keep securing strategy
     consistent across all subjects
  - Place marks at the bottom edges of electrodes and measure pre-post drift



## Electrode Drift: Models



### **Impedance**

- Greatest impediment to impedance:
  - Hair
- Do not over-soak sponges with saline
- Use <u>all plastic</u> hair clips to secure hair if needed
- Attempt to provide as much contact with the skin as possible
- Be careful not to stray from the intended electrode site

## Impedance/Contact Quality

- Impedance-based device
  - Aim for <15 kOhm before start of stimulation</li>
  - Impedance will improve during stimulation
  - Good to record impedance at beginning, middle, and end of stimulation period

- Contact quality device
  - Within '<10 bars' of optimal</li>
  - Rapid improvement with stim



### Procedures

- Conventional Application
  - Contact Medium
  - Electrode Location
  - Electrode Orientation
  - Electrode Drift
  - Scalp Contact
  - Impedance
- Ag/AgCl Application
  - Electrode Location
  - Contact Medium
  - Impedance







## Ag/AgCl electrode location: Cap Fit

- Easy Caps or other similar caps
  - Head-size specific
  - Measure head circumference
  - Select appropriate size



 Mark at least Cz and the center location of the 4 x 1 montage using the 10-20 location prior to cap placement

### Contact Medium: Conductance Gel

- Conductance gel (e.g., Signa gel) will saturate the skin over time
  - As the gel saturates the skin, impedance improves
  - Use gels tested by manufacturers to be safe for stimulation



- Careful not to overfill holder such that gel escapes bottom of holder
  - Avoid shunting



## Impedance: < 1.5 Quality Units

- Greatest impediment to impedance:
  - Hair
  - Expose scalp using end of blunt tipped syringe
  - Keep impedance consistent across electrodes

Attempt to minimize air pockets in gel







## Acknowledgements



## Center for Cognitive Aging and Memory (CAM)/Brain & Aging Lab

- Ronald Cohen, PhD
- Eric Porges, PhD
- Damon Lamb, PhD
- John Williamson, PhD
- Andrew O'Shea, MS
- Nicole Nissim, MS
- Vaughn Bryant, MS
- Alissa Old Crow, MS

- Sarah Szymkowicz, MS
- •Molly McLaren, MS
- Lindsey Richards, BS
- Rachel Telles, BS
- Roxanne Rezaei, BS
- Joy Johnson, BS
- Tina Lacy, MS

#### **Funding:**

NIH/NIA: R01AG054077, K01AG050707 McKnight Brain Research Foundation



### Take home

- Rigor and reproducibility are in the details
- Minimize variation in application
- Use measureable approaches to application
- Choose a device designed for application of tES on the head/spine
- Do NOT oversaturate sponges
- Record impedance/contact quality
- Record electrode drift
- Careful about strap tightness
- 10-20 location is an easy and consistent guide for electrode placement
- Report exact details of application methods