Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask | Frontiers in Human Neuroscience

Interesting especially in relation to Michael Weisend’s success using F10 in skill (target recognition) acquisition. That the research is going in this direction is encouraging. I expect we’ll have a much better understanding of various cognitive enhancement strategies over the next few years.

We compared effects of 30 min prefrontal and parietal stimulation to right and left hemispheres on subtask performance during the first 45 min of training. The strongest effects both overall and for ship flying control and velocity subtasks were seen with a right parietal C4, reference to left shoulder montage, shown by modeling to induce an electric field that includes nodes in both dorsal and ventral attention networks. This is consistent with the re-orienting hypothesis that the ventral attention network is activated along with the dorsal attention network if a new, task-relevant event occurs while visuospatial attention is focused Corbetta et al., 2008. No effects were seen with anodes over sites that stimulated only dorsal C3 or only ventral F10 attention networks. The speed subtask update memory for symbols benefited from an F9 anode over left prefrontal cortex. These results argue for development of tDCS as a training aid in real world settings where multi-tasking is critical.

via Frontiers | Transcranial direct current stimulation facilitates cognitive multi-task performance differentially depending on anode location and subtask | Frontiers in Human Neuroscience.