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Brain stimulation landscape
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ECT in a nutshell
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Quasistatic approximation
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Room for improvement: electrode placement
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Room for improvement: current amplitude
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Here’'s the problem...
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Summary: The physical properties of the electroconvulsive therapy (ECT) stimulus
markedly affect both efficacy and side effects. We review basic principles in charac-
terizing these physical properties and in quantifying the ECT stimulus. The topics
discussed include the application of Ohm’s law, alternative composite units of ECT
dosage (energy and charge), the use of constant-current, constant-voltage, and con-
stant-energy principles in ECT devices, the nature of current shunting in ECT and the
determinants of impedance, the relations between impedance and seizure threshold, the
seizure-eliciting efficiency of alternative stimulus waveforms and of stimulus param-
eter configurations, and the role of reactive components (capacitance and inductance)
in the ECT circuit. New findings are also presented regarding several of these issues.
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The effects of tDCS are hlghly variable,

as in other plasticity-inducing protocols, with
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Background: Responses to a number of different plasticity-inducing brain stimulation protocols are highly
variable. However there is little data available on the variability of response to transcranial direct current
stimulation (TDCS).
Objective: We tested the effects of TDCS over the motor cortex on corticospinal excitability. We also
examined whether an individual’s response could be predicted from measurements of onset latency of
motor evoked potential (MEP) following stimulation with different orientations of monophasic trans-
cranial magnetic stimulation (TMS).
Methods: Fifty-three healthy subjects participated in a crossover-design. Baseline latency measurements
with different coil orientations and MEPs were recorded from the first dorsal interosseous muscle prior
to the application of 10 min of 2 mA TDCS (0.057 mA/cm?). Thirty MEPs were measured every 5 min for
up to half an hour after the intervention to assess after-effects on corticospinal excitability.
Results: Anodal TDCS at 2 mA facilitated MEPs whereas there was no significant effect of 2 mA cathodal
TDCS. A two-step cluster analysis suggested that approximately 50% individuals had only a minor, or no
response to TDCS whereas the remainder had a facilitatory effect to both forms of stimulation. There was
a significant correlation between the latency difference of MEPs (anterior—posterior stimulation minus
latero-medial stimulation) and the response to anodal, but not cathodal TDCS.
Conclusions: The large variability in response to these TDCS protocols is in line with similar studies using
other forms of non-invasive brain stimulation. The effects highlight the need to develop more robust
protocols, and understand the individual factors that determine responsiveness.

© 2014 Published by Elsevier Inc.

around 50% of individuals having poor or absent

responses.
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Classic spherical head model
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TABLE 1
NOMINAL HEAD MODEL PARAMETERS

Anatomical parameter Human
Female Male
Head diameter (cm) 17.3 17.5
Scalp thickness ( mm) 5.60 5.53
Skull thickness ( mm) 7.08 6.50
CSF thickness ( mm) 3.00 3.00
Gray matter thickness (mm) 3.00 3.00
White matter thickness ( mm) 67.8 69.6
Brain volume (cm?) 1486.6 1602.9
Scalp conductivity (Sm™1) 0.33 0.33
Skull conductivity (Sm~1) 0.0083 0.0083
CSF conductivity (Sm™1) 1.79 1.79
Gray matter conductivity (Sm—1) 0.33 0.33
White matter conductivity (Sm™1) 0.14 0.14

Deng et al., J Neural Eng, 2011; J ECT, 2013; IEEE Trans Neural Syst Rehabil Eng 2015
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Peak: 0.316

V/m per mA

Troung et al., 2013
tDCS in obesity

Peak: 0.382
VIm per mA

Troung et al.,, 2013
tDCS in pediatric

Dmochowski et al., 2013
tDCS in stroke

Gillick et al., 2014
tDCS in pediatric stroke
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Unpublished, collaboration with J. van Waarde (Netherlands)
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Electric field and hippocampal plasticity
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Hippocampal plasticity in ECT
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ORIGINAL STUDY

Controlling Stimulation Strength and Focality
in Electroconvulsive Therapy via Current Amplitude

and Electrode Size and Spacing
Comparison With Magnetic Seizure Therapy

Zhi-De Deng, PhD,*{ Sarah H. Lisanby, MD,*} and Angel V. Peterchev, PhD*g//

Objectives: Understanding the relationship between the stimulus
parameters of electroconvulsive therapy (ECT) and the electric field
characteristics could guide studies on improving risk/benefit ratio. We
aimed to determine the effect of current amplitude and electrode size
and spacing on the ECT electric field characteristics, compare ECT focality
with magnetic seizure therapy (MST), and evaluate stimulus individualiza-
tion by current amplitude adjustment.

Methods: Electroconvulsive therapy and double-cone-coil MST elec-
tric field was simulated in a S-shell spherical human head model. A range
of ECT electrode diameters (2-5 cm), spacing (1-25 cm), and current
amplitudes (0900 mA) was explored. The head model parameters were
varied to examine the stimulus current adjustment required to compen-
sate for interindividual anatomical differences.

Results: By reducing the electrode size, spacing, and current, the ECT
electric field can be more focal and superficial without increasing scalp
current density. By appropriately adjusting the electrode configuration
and current, the ECT electric field characteristics can be made to approx-
imate those of MST within 15%. Most electric field characteristics in
ECT are more sensitive to head anatomy variation than in MST, espe-
cially for close electrode spacing. Nevertheless, ECT current amplitude
adjustment of less than 70% can compensate for interindividual ana-
tomical variability.

Conclusions: The strength and focality of ECT can be varied over a
wide range by adjusting the electrode size, spacing, and current. If desir-
able, ECT can be made as focal as MST while using simpler stimulation

equipment. Current amplitude individualization can compensate for inter-
individual anatomical variability.

Key Words: electroconvulsive therapy, magnetic seizure therapy,
electric field, focality, model

(J ECT 2013;29: 325-335)

lectroconvulsive therapy (ECT) is the most effective treat-

ment for severe depression due to its powerful and rapid ther-
apeutic action in patients who are otherwise treatment resistant."
However, ECT can cause amnesia and other adverse effects, which
impedes its broader application.>> Various alterations of ECT
technique have been introduced to achieve more focal stimula-
tion, based on the theory that increased focality of the electrical
stimulus and the resultant seizure may be a means of reducing
adverse effects.*

Among the approaches that make ECT more focal, electrode
placement has been the subject of most intensive investigation.
The shift from bilateral (BL) to right unilateral (RUL) electrode
placement is representative of the move toward more focal elec-
trical stimulus delivery, based on the assumption that by reducing
the spacing between the electrodes and placing them over the right
hemisphere, the direct stimulation and seizure intensity in the left
hemisphere can be reduced, thereby sparing verbal and memory
functions. Indeed. with annrooriatelv dosed electrical stimulus.

“Current amplitude
iIndividualization

can compensate for inter-individual
J)

anatomical variability.



Application of current amplitude individualization
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/Zhi, what about uncertainties in tissue conductivity?



Model validation and parameter estimation
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Take home

& A major source of variability in clinical/behavioral outcome is
inter-individual differences in head anatomy and tissue electric
properties

§ Some of this anatomical variability can be compensated with
oroper individualized dosing strategies

S Despite uncertainties in parameters, computational models are
iImproving and becoming more ubiguitous
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Essentially, all models are wrong,
J)

but some are .

~George E. P. Box




