

Targeted stimulation of active brain sources using electromagnetic reciprocity

Jacek P. Dmochowski Dept. of Biomedical Engineering, CCNY

Paradigm shift

Conventional tDCS

- Large pads or sponges
- Diffuse electric fields
- Optimization requires exhaustive search

HD-tDCS

Lucas Parra

Marom Bikson

- Multiple small electrodes
- Electric field can be made focal
- Fast convex optimization steers current to target

Shaping the electric field

Dmochowski et al. (2011) J Neural Eng

Anatomical targeting

Anatomical targeting requires a "hard decision" on the required target.

EEG-guided tDCS

Reciprocal tDCS in a finite element model

Achievable focality & intensity

Reciprocal montages are not trivial

Reciprocity handles varying source orientation

Takeaways

- Advantages of EEG-guided tDCS
 - Data-driven, no assumptions on target
 - Can account for individual differences
 - Source localization not required
 - Immediate applicability to disorders with observable EEG correlates
- Many sources of variability in tDCS
 - Electrode placement and montage could be systematized

Acknowledgments

Project collaborators:

Anthony Norcia (Stanford)

Laurent Koessler (CRAN-Nancy)

Marom Bikson (CCNY)

