Technical aspects of transcranial electrical stimulation: Hardware, devices, and procedures

Adam J. Woods, PhD
University of Florida
Center for Cognitive Aging and Memory
McKnight Brain Institute
September 29th, 2016
Bethesda, MD
Adam J. Woods, PhD does not have any financial arrangements or affiliations with any commercial entities whose products, research or services may be discussed in these materials.
Technical aspects of transcranial electrical stimulation

Outline

Part 1: Devices
Part 2: Electrode Hardware
Part 3: Procedures

Technical aspects of transcranial electrical stimulation

Outline

Part 1: Devices
Part 2: Electrode Hardware
Part 3: Procedures
Low Current tES Devices

• Wide range of marketed devices
 – Currently a limited set of certified low current tES-stimulators available
 – Important to use a professionally engineered medical device designed to deliver current to the head/spine
Key features to look for:

- **Constant and controlled current delivery**
 - Exactness of current delivered is critical
 - Voltage controlled (constant voltage) devices are not appropriate for tES

- **Reasonable and safe current ceiling**
 - Devices do not need to be able to stimulate at 1 amp for tES

- **Blinding and sham features**
 - For research or clinical trial applications

- **Current ramp function**

- **Programmable (if desired)**
 - Current intensity, duration of stimulation, etc.

- **Impedance/contact quality**

- **Other safety features**
 - Battery operation, low battery warning, abort function, etc.
Technical aspects of transcranial electrical stimulation

Outline

Part 1: Devices
Part 2: Electrode Hardware
Part 3: Procedures
Electrode Hardware

• Conventional Electrodes
 – Electrode Assembly
 – Electrode Size
 – Electrode Type
 – Wires

• HD/Multi-electrode
 – Electrode Assembly
 – Electrode Size
 – Electrode Type
 – Wires
Electrode Hardware

- Conventional Electrodes
 - Electrode Assembly
 - Electrode Size
 - Electrode Type
 - Wires

- HD/Multi-electrode
 - Electrode Assembly
 - Electrode Size
 - Electrode Type
 - Wires
Conventional Electrode Assembly

- Electrode
- Sponge
- Wire
Conventional Electrode

- Biocarbon Electrodes
 - Most common
Conventional: Sponge Size

• A variety of sizes
 – 5x5 cm
 – 5x7 cm
 – 5x10 cm
 – 10x10 cm
 – Other sizes available

• Why different sizes?
 – Control of current concentration/intensity
 – Method for altering the “general” focality of current delivery
Sponge/Electrode Integrity

- Biocarbon Electrodes and Sponges

- Conventional 1x1
 - Rubber electrodes
 - Sponge pads
 - Single use
 - Multi-use
Electrode Wires

- Manufacturer specific device connection
- Common electrode connection terminal
- Careful to remove by grasping at terminal, not the wire
Electrode Hardware

- Conventional Electrodes
 - Electrode Assembly
 - Electrode Size
 - Electrode Type
 - Wires

- HD/Multi-electrode
 - Electrode Assembly
 - Electrode Size
 - Electrode Type
 - Wires
HD or multi-electrode assembly

• Electrodes

• Electrode holders
Electrode Type

- **Ag/AgCl Electrode**
 - Must be replaced after two uses in center position of “4x1 montage”
Ag/AgCl Electrode Integrity

- Chipped Ag/AgCl electrodes
 - Do not use
 - Can also break during insertion holder

- Ag/AgCl electrodes must be replaced after certain number of uses
 - Excessive corrosion/blackening of electrodes should cue replacement
 - An electrode “use log” is helpful for tracking number of uses in the center position
Electrode Holder

• Plastic Holder for positioning of electrode
• Fits within standard EasyCap or other similar EEG-style caps

Image: Villamar et al., 2013
Wires

• Fragile
• Highest point of failure
• Methods for reducing wire strain
 – Wrapping wires around electrode holder
 – Clipping wire junction to the participants shirt or chair
Technical aspects of transcranial electrical stimulation

Outline

Part 1: Devices
Part 2: Electrode Hardware
Part 3: Procedures
Procedures

• Conventional Application
 – Contact Medium
 – Electrode Location
 – Electrode Orientation
 – Electrode Drift
 – Scalp Contact
 – Impedance

• Ag/AgCl Application
 – Electrode Location
 – Contact Medium
 – Impedance
Procedures

• Conventional Application
 – Contact Medium
 – Electrode Location
 – Electrode Orientation
 – Electrode Drift
 – Scalp Contact
 – Impedance

• Ag/AgCl Application
 – Electrode Location
 – Contact Medium
 – Impedance
Contact Medium: Saline: 0.9% Solution

- Proper saturation of sponge
 - ~8 mL recommended for 5 x 7 cm
 - Eye dropper gives best control over delivery (~4 mL/side)
- Do NOT over saturate
 - Bridging
- Do **NOT** apply stimulation to a dry sponge
 - Sponges designed to hold saturation ~20 minutes
- **NEVER** use water
Electrode Paste

• Alternative to Saline
 – Pros
 • Stability over time
 • Less likely to “drip”
 • Sensation differences
 – Decreased sensation with 3+mm layer
 – Cons
 • More difficult to obtain low impedance levels
 – Necessary to massage paste into scalp area prior to placing paste covered electrode
 • Thick (~3mm) coating of paste must be maintained
 – Easy to press electrode such that paste thickness is decreased
Electrode Location

International 10 – 20 Measurement System

Diagram showing various electrode locations on a head for measurement purposes.
Electrode Drift

• When using straps to secure electrodes
 – Straps may drift over time if not properly secured
 – Fine or oily hair have higher rate of drift
 – Use the heads anatomy to your advantage
 – Use cross-straps and chin straps if needed on a particular montage
 – Keep securing strategy consistent across all subjects
 – Place marks at the bottom edges of electrodes and measure pre-post drift
Electrode Drift: Models

Woods et al., Brain Stimulation 2015
Impedance

- Greatest impediment to impedance:
 - Hair

- Do not over-soak sponges with saline

- Use all plastic hair clips to secure hair if needed

- Attempt to provide as much contact with the skin as possible

- Be careful not to stray from the intended electrode site
Impedance/Contact Quality

- Impedance-based device
 - Aim for <15 kOhm before start of stimulation
 - Impedance will improve during stimulation
 - Good to record impedance at beginning, middle, and end of stimulation period

- Contact quality device
 - Within ‘<10 bars’ of optimal
 - Rapid improvement with stim
Procedures

• Conventional Application
 – Contact Medium
 – Electrode Location
 – Electrode Orientation
 – Electrode Drift
 – Scalp Contact
 – Impedance

• Ag/AgCl Application
 – Electrode Location
 – Contact Medium
 – Impedance
Ag/AgCl electrode location: Cap Fit

• Easy Caps or other similar caps
 – Head-size specific
 – Measure head circumference
 – Select appropriate size

• Mark at least Cz and the center location of the 4 x 1 montage using the 10-20 location prior to cap placement
Contact Medium: Conductance Gel

• Conductance gel (e.g., Signa gel) will saturate the skin over time
 – As the gel saturates the skin, impedance improves
 – Use gels tested by manufacturers to be safe for stimulation

• Careful not to overfill holder such that gel escapes bottom of holder
 – Avoid shunting
Impedance: < 1.5 Quality Units

• Greatest impediment to impedance:
 – Hair
 – Expose scalp using end of blunt tipped syringe
 – Keep impedance consistent across electrodes

• Attempt to minimize air pockets in gel

Image: Villamar et al., 2013
Acknowledgements

Center for Cognitive Aging and Memory (CAM)/Brain & Aging Lab

- Ronald Cohen, PhD
- Eric Porges, PhD
- Damon Lamb, PhD
- John Williamson, PhD
- Andrew O’Shea, MS
- Nicole Nissim, MS
- Vaughn Bryant, MS
- Alissa Old Crow, MS

Funding:
NIH/NIA: R01AG054077, K01AG050707
McKnight Brain Research Foundation
Rigor and reproducibility are in the details

- Minimize variation in application
- Use measurable approaches to application
- Choose a device designed for application of tES on the head/spine
- Do NOT oversaturate sponges
- Record impedance/contact quality
- Record electrode drift
- Careful about strap tightness
- 10-20 location is an easy and consistent guide for electrode placement
- Report exact details of application methods