Michael Weisend – Mind Research Network DIYtDCS Podcast #4

Dr. Michael WeisendMichael Weisend PHD. is a principal investigator at The Mind Research Network, MRN.org, and assistant professor of Translational Neuroscience at the University of New Mexico, Albuquerque. Dr. Weisend and his team pioneered a method for determining optimal brain regions for tDCS stimulation using fMRI. Much of Dr. Weisend’s work is focused on cognitive enhancement in healthy subjects for the purpose of reducing the amount of time it takes to master a skill. He shared a full hour of his time and a wealth of tDCS-related information. Download the interview here (zipped mp3). Subscribe in iTunes. (Firefox users- there’s an issue with the html5 audio player. In the meantime you can download the episode or open the page in another browser).

Show Notes
The Sally Adee article I discuss. (pdf)
The Through The Wormhole episode mentioned. (YouTube)
Magnetoencephalography
DARPA The Defense Advanced Research Projects Agency
DARWARS Ambush NK is a research program intended to accelerate the development and deployment of military training systems. (wiki) (pdf)
TDCS guided using fMRI significantly accelerates learning to identify concealed objects.
eeg electrodes + gel + wrap.
Transcranial direct current stimulation’s effect on novice versus experienced learning.
iNTIFIC Develops games and training.
pulsed oscillatory electromagnetic fields
tRNS
Fisher Wallace Stimulator.
Perils of tDCS.
F10-anodal, cathodal-opposite upper arm, actually does something.
‘Target search and identification’. What could it be good for the average person?
Dear reader, help me find a way to build a self-experiment that will test my results.
Recalling distant memories?
Anecdotes…
Girl who heard melodies.
Guy who solved a problem he’d been working on.
Age-related memory decline… ‘I can find words now…’
-More verbally fluent as a result of tDCS
-Left Inferior Frontal Gyrus (approx F5-anode, cathode opposite upper arm)
“People do not like it.” Cathodal stimulation of F10
Accelerating non-declarative skill learning.
-Cathode-L-DLPFC, Anode-M1
Grants outstanding to test more of this.
Recruiting the correct brain network to deal with the stimuli at hand for the purpose of successful task completion.
Competing brain networks!
Neural modulation fastest growing area of medicine.
Ethics of tDCS.
Lisa Marshall
Potential for-profit applications?
Conferences: Human Brain Mapping, Seattle June 16-20
Society for Neuroscience San Diego Nov 9-13

Marom Bikson of Soterix Medical and CUNY – DIY tDCS Podcast Episode #3

Marom Bikson is CEO of Soterix Medical and Associate Professor at City College of New York in the Department of Biomedical Engineering. Marom is a distinguished tDCS scientist and prominent in the development of HD-tDCS. Download the interview here (zipped mp3). (Firefox users- there is an audio player here, but it’s displaying intermittently. Trying to track down the issue. In the meantime you can download the episode or open the page in another browser).

Marom Bikson

Marom Bikson

(We got a good forty minutes of interview in before the Skype gremlins caught up with us. I had to cobble an ending together.)

Show Notes:
Post-Doc, Neurophysiology Unit, University of Birmingham Medical School, U.K., 2003
Ph.D., Biomedical Engineering, Case Western Reserve University Cleveland, OH, 2000
B.S., Biomedical Engineering (EE Concentration), Johns Hopkins University, Baltimore, MD, 1995
Introduction to Transcranial Direct Current Stimulation (tDCS) in Neuropsychiatric Research
5th International Conference on Non-invasive Brain Stimulation 2013

Instrumentation – making medical gizmos, process.
IRB- Institutional Review Board
IRB at the FDA
Small Business Technology Transfer STTR grant.

Soterix partners
Abhishek Datta CTO,
Lucas Parra
Bootstrapped at this point.

Difficulty in engineering medical devices is in designing for the anomalous cases- how that 1 in 999 times situation could go wrong.

Clinical trials. Depression, (Colleen Loo, Blackdog Institute), pain, stroke, epilepsy clinical trials ongoing.

Customizing technologies to match needs of particular clinical situations.

Soterix developed software designed for clinicians.
HDTargeting
HDExplore
Modeling current flow through the head.

Perhaps depression studies are closest to FDA qualification for tDCS?
(Prediction is very hard, especially about the future – Yogi Berra.)

A device (NorDoc Smartstim) that can go to 4mA is being used in a smoking cessation trial? (Trial info indicates 2mA current dose.)

FDA tDCS approval would be device-specific at first.  But would open the door to ‘me too’ mechanism, FDA 510(k)

HD tDCS can have multiple cathodes and or multiple anodes. An array of 4 small anodes splitting 2mA, for example (.5 mA each electrode), can function as an anodal ‘virtual pad’. Assumes cathode somewhere else on the body).

Image By Richard McKinley USAF

Image By Richard McKinley USAF

Tolerability is how tolerable in terms of side effects a medication is.

Transcutaneous Spinal Direct Current Stimulation Example tsDCS paper.

A Theory of tDCS (“Gross oversimplification”) As positive current flows into the cortex it passes neurons.
Because of the nature of neurons, this positive current depolarizes somas (cell’s body), increasing excitability, thereby increasing the functionality & plasticity of that region (hypothesis… “We really don’t know.”). Under the cathode, somas (cells) are being hyper-polarized – excitabilty decreases.

A synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another cell.
Pyramidal neuron

Titration, also known as titrimetry, is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of an identified analyte.

TES Transcranial Electric Stimulation
“transcranial electrical stimulation” Merton and Morton 1980

“Priming the network in conjunction with applying tDCS makes a lot of sense, as a way to make the tDCS to do what you want.” (Co-priming – The idea that one would initiate an activity first, and THEN add tDCS.)

DARPA supported accelerated learning.

Memory consolidation.
Lisa Marshall

H. Branch Coslett, MD

DIY tDCS community and building medical devices. Redundancy.
tDCS implies proven, vetted protocols, that have been used in clinical trials.

Thanks Marom!

Is Electricity the New Smart Drug? – Percolator – The Chronicle of Higher Education

I called Weisend recently to see what he thought of people experimenting with tDCS. “In the DIY crowd they don’t have the neuroimaging to start the process and know where to place the electrodes,” he told me. “Their success and their safety are going to be limited.” In the laboratory, subjects go through two or three sessions of tDCS over a week. What happens long term if you do more than that? Nobody knows. And the equipment you order from some random person online may not be as reliable as what’s used in a laboratory.

That said, Weisend believes tDCS can be done safely, and he thinks it might be used to prevent memory loss in the elderly or to help patients recover from traumatic brain injuries. He’s tried tDCS on his own brain hundreds of time and hasn’t suffered any deleterious effects—with the notable exception of a few skin burns that were severe enough to leave scars. “You get attached to your work, I guess,” he says.

via Is Electricity the New Smart Drug? – Percolator – The Chronicle of Higher Education.