As long time readers would know I’m a hopeful skeptic when it comes to non-invasive brains stimulation. But the increasing amount of marketing around more and more devices is making it harder to parse the science from hype. It’s like – well they got away with saying ‘Three times faster’, so let’s go with ‘Faster than ever thought humanly possible’! Don’t buy it! Are there legit reasons to be excited about non-invasive brain stimulation? Absolutely! But playing guitar in ‘half the time’ or hitting holes in one… are not! It’s still early days.
With that in mind I do recommend this discussion between Kevin Rose (a venture capitalist) and Dr. Brett Wingeier of Halo Neuro. Although I feel Halo Neuro’s marketing department is making claims impossible to substantiate (subscribe to their mailing list if you want to see what I’m talking about), Dr Wingeier is very well versed in all the latest science around non-invasive brain stimulation and he discusses some of the more recent and exciting research.
Our friend and trusted neuroscience PHD student Nathan just published a review of the new LIFTiD tDCS device, A Look At The LIFTiD tDCS (Full disclosure, both he and I were given one to try out by Caputron. I’ve been waiting for Nathan’s report before trying mine.)
The obvious advantage to the LIFTiD device is it’s simplicity and ease of use. As I suspected this also turns out to be it’s main weakness in that you have only the default montage available.
The LIFTiD team was advised by neurosurgeon Dr. Theodore H. Schwartz. He was recently interviewed by Neurogal MD. While much of what is discussed will be familiar to DIYtDCS readers, I was interested to see that Dr. Schwartz was quick to point out what we don’t know about tDCS and neurostimulation.
Michael was told he had reached his limit on what he could do. This was not something Michael and his partner, Jason, would accept. They began to look for other options and found Johns Hopkins Physical Medicine and Rehabilitation’s Non-Invasive Brain Stimulation (NIBS) as Michael’s answer to improve. Watch to learn more about Pablo Celnik and his team’s approach to setting Michael on a path to recovery.
Sarah Lisanby, director of the division of the National Institute of Mental Health (NIMH) opens the workshop (very interesting, great slides) after introductions at 0:14, Anna Wexler speaks at 2:25.
In the spirit of fairness, I’m posting this musician’s experience of using the Halo Sport for guitar training. Unlike Mario and his piano experience, this fellow, TomboLP, ultimately found no added benefit, though in earlier videos (this is the part 5 of 5) he was excited by what he assumed were positive results.
This is the last video in my test of the Halo Sport. As I didn’t reach the goals I set for myself in the time allotted and feel that there were no gains that couldn’t be otherwise explained by practice, I have now returned the headset. Even though the product didn’t work out for me, I will say that the return process was very straightforward and hassle-free.
Although the home use of tDCS is often referred to as a novel phenomenon, in reality the late nineteenth and early twentieth century saw a proliferation of electrical stimulation devices for home use.
In particular, the use of a portable electrotherapy device known as the “medical battery” bears a number of striking similarities to the modern-day use of tDCS.
Many features related to the home use tDCS—a do-it-yourself movement, anti-medical establishment themes, conflicts between lay and professional usage—are a repetition of themes that occurred a century ago with regard to the medical battery.
A number of features seem to be unique to the present, such as the dominant discourse about risk and safety, the division between cranial and non-cranial stimulation, and utilization for cognitive enhancement purposes.
Viewed in historical context, the contemporary use of electrical stimulation at home is not unusual, but rather the latest wave in a series of ongoing attempts by lay individuals to utilize electricity for therapeutic purposes.
Also: the full patent file for that image is here: https://t.co/vvqp8sQfuC … other interesting images there too
Borrowed (screen shot) from the July 2014 Roi Cohen Kadosh edited ‘The Stimulated Brain’ (Google Books link which, though many pages missing, is still full of excellent info or buy it on Amazon,affiliate link).
Click image to open in full size.
An intelligent introduction to tDCS and TMS in the context of Cognitive Enhancement. Dr. Roy Hamilton (at around 19:00 in the video, the beginning is basic intro boilerplate) discusses studies which demonstrate significant positive cognitive effects in healthy individuals. I especially liked Dr. Hamilton’s take on the concerns and potential risks of non-invasive brain stimulation which he discusses towards the end of his talk.
Review of transcranial direct current stimulation in poststroke recovery. In this review, we summarize characteristics of tDCS (method of stimulation, safety profile, and mechanism) and its application in the treatment of various stroke-related deficits, and we highlight future directions for tDCS in this capacity.
Michael Weisend PHD. is a principal investigator at The Mind Research Network, MRN.org, and assistant professor of Translational Neuroscience at the University of New Mexico, Albuquerque. Dr. Weisend and his team pioneered a method for determining optimal brain regions for tDCS stimulation using fMRI. Much of Dr. Weisend’s work is focused on cognitive enhancement in healthy subjects for the purpose of reducing the amount of time it takes to master a skill. He shared a full hour of his time and a wealth of tDCS-related information. Download the interviewhere (zipped mp3). Subscribe in iTunes. (Firefox users- there’s an issue with the html5 audio player. In the meantime you can download the episode or open the page in another browser).
Show Notes The Sally Adee article I discuss. (pdf)
The Through The Wormhole episode mentioned. (YouTube) Magnetoencephalography DARPA The Defense Advanced Research Projects Agency
DARWARS Ambush NK is a research program intended to accelerate the development and deployment of military training systems. (wiki) (pdf) TDCS guided using fMRI significantly accelerates learning to identify concealed objects. eeg electrodes + gel + wrap. Transcranial direct current stimulation’s effect on novice versus experienced learning. iNTIFIC Develops games and training.
pulsed oscillatory electromagnetic fields
tRNS Fisher Wallace Stimulator. Perils of tDCS. F10-anodal, cathodal-opposite upper arm, actually does something.
‘Target search and identification’. What could it be good for the average person?
Dear reader, help me find a way to build a self-experiment that will test my results.
Recalling distant memories?
Anecdotes…
Girl who heard melodies.
Guy who solved a problem he’d been working on.
Age-related memory decline… ‘I can find words now…’
-More verbally fluent as a result of tDCS
-Left Inferior Frontal Gyrus (approx F5-anode, cathode opposite upper arm)
“People do not like it.” Cathodal stimulation of F10 Accelerating non-declarative skill learning.
-Cathode-L-DLPFC, Anode-M1
Grants outstanding to test more of this.
Recruiting the correct brain network to deal with the stimuli at hand for the purpose of successful task completion.
Competing brain networks!
Neural modulation fastest growing area of medicine.
Ethics of tDCS.
Lisa Marshall
Potential for-profit applications?
Conferences: Human Brain Mapping, Seattle June 16-20 Society for Neuroscience San Diego Nov 9-13
Just found this in iTunesU. Wow! You’ll recognize many of these names if you’re reading the tDCS literature. I’ve only watched the Michael Weisend talks (whom we met earlier on the blog) so far. I have a much better understanding of the difficulty of running a tDCS trial now. There’s a lot that can go wrong. If your protocols aren’t set up just right, your information might be useless. Here’s the web link iTunes Link from which you can download in iTunes. Downloads are quite slow.
Introduction to Neurosystems Engineering, Spring 2011 (ECE 595) Neurosystems Engineering is an emerging field at the intersection of Neuroscience, Psychology, and Engineering, and the University of New Mexico is its epicenter.
Course Intro Dr. Gerold Yonas
Course Syllabus Dr. Gerold Yonas
Tools and Techniques in Neuronal Stimulation Dr. Edl Schamiloglu
Basic Principles of Feedback and Control Prof. Chaouki T. Abdallah
Discussing the Course General Approach and Direction Dr. Gerold Yonas
Effects of Direct Current, Non-Invasive Brain Stimulation on Learning Michael Weisend
In the Laboratory Transcranial Direct Current Stimulation (tDCS) Michael Weisend
Posttraumatic Stress Disorder: Roles for Treatment & Prevention (Part I) Dr. Pilar M Sanjuan
Posttraumatic Stress Disorder Roles for Treatment & Prevention (Part II) Dr. Pilar M Sanjuan
Tour of the Mind Research Network Dr. Vince D. Calhoun
Neuroimaging of Intelligence and Creativity (Part I) Dr. Rex E. Jung
Neuroimaging of Intelligence and Creativity (Part II) Dr. Rex E. Jung
Memories and Migraines: Application of tDCS Laura Matzen
Neurochemistry Application in NonInvasive Brain Stimulation Dr. Charles Gasparovic
Non-Invasive Brain Stimulation 1:03:47 Lucas C. Parra
Epilepsy, Autism, and Novel Treatment Strategies Dr. Jeffrey David Lewine
The Emerging Field of Sleep Disorders Medicine Dr. Barry Krakow
Presentation of Class Projects Student
Marom Bikson is CEO of Soterix Medical and Associate Professor at City College of New York in the Department of Biomedical Engineering. Marom is a distinguished tDCS scientist and prominent in the development of HD-tDCS. Download the interviewhere (zipped mp3). (Firefox users- there is an audio player here, but it’s displaying intermittently. Trying to track down the issue. In the meantime you can download the episode or open the page in another browser).
Marom Bikson
(We got a good forty minutes of interview in before the Skype gremlins caught up with us. I had to cobble an ending together.)
Customizing technologies to match needs of particular clinical situations.
Soterix developed software designed for clinicians.
HDTargeting
HDExplore
Modeling current flow through the head.
Perhaps depression studies are closest to FDA qualification for tDCS?
(Prediction is very hard, especially about the future – Yogi Berra.)
A device (NorDoc Smartstim) that can go to 4mA is being used in a smoking cessation trial? (Trial info indicates 2mA current dose.)
FDA tDCS approval would be device-specific at first. But would open the door to ‘me too’ mechanism, FDA 510(k)
HD tDCS can have multiple cathodes and or multiple anodes. An array of 4 small anodes splitting 2mA, for example (.5 mA each electrode), can function as an anodal ‘virtual pad’. Assumes cathode somewhere else on the body).
Image By Richard McKinley USAF
Tolerability is how tolerable in terms of side effects a medication is.
A Theory of tDCS (“Gross oversimplification”) As positive current flows into the cortex it passes neurons.
Because of the nature of neurons, this positive current depolarizes somas (cell’s body), increasing excitability, thereby increasing the functionality & plasticity of that region (hypothesis… “We really don’t know.”). Under the cathode, somas (cells) are being hyper-polarized – excitabilty decreases.
A synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another cell. Pyramidal neuron
Titration, also known as titrimetry, is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of an identified analyte.
TES Transcranial Electric Stimulation
“transcranial electrical stimulation” Merton and Morton 1980
“Priming the network in conjunction with applying tDCS makes a lot of sense, as a way to make the tDCS to do what you want.” (Co-priming – The idea that one would initiate an activity first, and THEN add tDCS.)
[Apologies for audio quality. It won’t happen again.]
Dr. Jim Fugedy runs the Brain Stimulation Clinic, in Atlanta, GA, and has been treating patients using tDCS since 2007. Download the interviewhere (zipped mp3).
Dr. Jim Fugedy
The Brain Stimulation Clinic in Atlanta is the destination for memory and learning enhancement and treatment-resistant patients who suffer from chronic pain, fibromyalgia, migraine headaches, CRPS, depression and tinnitus. Transcranial direct current stimulation (tDCS) therapy is provided in a pleasant, relaxing environment. Instruction, training and supervision for home use is also available for select patients.
Show Notes:
Jim is an anesthesiologist.
The study Jim refers to regarding Felipe Fregni & fibromyalgia: A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia (full pdf)
tDCS for treatment of fibromyalgia is not certified – it’s ‘off label’
Device is certified, but not for tDCS = no insurance code, can’t be billed to insurance
20 minute treatment for 5 days.
For fibromyalgia – reduces pain, improves issues – fatigue, compromised mental function
2″ electrodes
(ActivaDose ii Update 3/16 now available as complete tDCS kit through Caputron Medical, use voucher code ‘diytdcs’ for generous discount.)
Most benefit… chronic depression, treatment protocol based on Colleen Loo, Black Dog Institute 6 weeks, follow up maintenance. Up to 8 weeks of treatment + 1-2 treatments follow up maintenance. Daily 20 minute sessions
Can be treated at the clinic for 1-2 weeks. Or home treatment package.
“To treat depression, I place the anode over the left dlpfc (left dorsolateral prefrontal cortex) and the cathode over the contralateral supraorbital area. I have tried positioning the cathode over the contralateral dlpfc and extracephalically (opposite shoulder or upper arm), but the contralateral supraorbital locations provides the most robust effect.” (Correspondence)
Pain montage 2mA, anode M1 & cathode contralateral supra-orbital area
For chronic pain, the M1 is the most used area and that’s almost always my first choice. But you can use the cathode over the somatosensory (S1) cortex, to down-regulate the patient’s perception of pain.
And you can also stimulate the Dorsalateral prefrontal cortex which is involved in the emotional component of pain.
Looking at stimulating right dorsalateral prefrontal cortex to attenuate anxiety.
… it may be a location
for the non-pharmaceutical treatment for ADD.
Office visit $150.
Home use treatment package $2400 includes in-office evaluation and training, ActivaDose ii device, electrodes, and unlimited follow-up via visit, phone, skype…
Only side effect Jim has seen is skin burn (but easily avoided with sponge electrodes).
(Patient with skin burns who’d been treated by a doctor using electroencephalogram (EEG) electrodes.)
Tinnitus responds well, though temporarily, to tDCS
Anode, right dorsalateral prefrontal cortex, cortex opposite supra-orbital Harvard one day course on how to treat with tDCS. Taught 3-4 times a year.
Contrast with approved Electromagnetic treatment for depression (I think he’s referring to TMS transcranial magnetic stimulation here) A 6 week 30 treatment protocol costs between $10-15,000. Affects last about 6 months. And even though it’s certified, it’s not covered by insurance.
…”in the 12 years that it’s been used there have been no side effects reported other than skin (irritations).
“You know we hear stories about Canadians having to wait for surgery. But in the United States, if you don’t have the money and you don’t have insurance, you don’t have to worry about waiting, you won’t get the surgery.”
You can reach Jim at: doctorfugedy [theAtSignHere] transcranialbrainstimulation.com
Thanks Jim!