Ethical Issues in Research with Invasive and Non-Invasive Neural Devices in Humans | NIH

Thursday, October 26, 2017. Deep dive (7 hours!) long form, state of the art discussion of neurostimulation by leading experts. More about the Neuroethics Division of the BRAIN Multi-Council Working Group

Sarah Lisanby, director of the division of the National Institute of Mental Health (NIMH) opens the workshop (very interesting, great slides) after introductions at 0:14, Anna Wexler speaks at 2:25.

Permalink to video https://videocast.nih.gov/launch.asp?23553

Roster

  • Co-chair Christine Grady, MSN, PhD, Chief, NIH Department of Bioethics
  • Co-chair Hank Greely, JD, Stanford Law School (MCWG member)
  • Winston Chiong, MD, PhD, University of California, San Francisco
  • James Eberwine, PhD, University of Pennsylvania (MCWG member)
  • Nita Farahany, JD, PhD, Duke School of Law
  • L. Syd M Johnson, PhD, Michigan Technological University
  • Bradley Hyman, MD, PhD, Massachusetts General Hospital (MCWG member)
  • Steve Hyman, MD, Broad Institute
  • Karen Rommelfanger, PhD, Emory University
  • Elba Serrano, PhD, New Mexico State University (MCWG member)
  • Khara Ramos, PhD, NINDS – Neuroethics Division Executive Secretary and NIH liaison

 

Do DIY Brain-Booster Devices Work? | Scientific America

Excellent article traces the rise in tDCS interest. Includes many of the key players and links to important research papers. Do DIY Brain-Booster Devices Work?

Medical Batteries – The History of Electrotherapy

Update 2/17/17 BBC The strange Victorian fashion of self-electrification
tdcslindstroms-electro-medical-apparatus

If you’ve been following along very closely you may recall that podcast episode #6 guest Anna Wexler mentioned in passing that she had been researching Ye Olde practice of therapeutically applying current to various parts of the body. Well, an early version of a new paper of hers landed the other day: Recurrent themes in the history of the home use of electrical stimulation: Transcranial direct current stimulation (tDCS) and the medical battery (1870–1920). It’s behind a paywall but here are some highlights.

  • Although the home use of tDCS is often referred to as a novel phenomenon, in reality the late nineteenth and early twentieth century saw a proliferation of electrical stimulation devices for home use.
  • In particular, the use of a portable electrotherapy device known as the “medical battery” bears a number of striking similarities to the modern-day use of tDCS.
  • Many features related to the home use tDCS—a do-it-yourself movement, anti-medical establishment themes, conflicts between lay and professional usage—are a repetition of themes that occurred a century ago with regard to the medical battery.
  • A number of features seem to be unique to the present, such as the dominant discourse about risk and safety, the division between cranial and non-cranial stimulation, and utilization for cognitive enhancement purposes.
  • Viewed in historical context, the contemporary use of electrical stimulation at home is not unusual, but rather the latest wave in a series of ongoing attempts by lay individuals to utilize electricity for therapeutic purposes.

Lots of ‘medical battery’ patents here.
And a ton of wonderful images to be found in books in Google’s digitized library.
Most of these came from a single book!

 

How Should We Regulate Those Brain-Zapping Gadgets That Promise to Boost Your Memory? | Slate

Anna Wexler writes about her recent paper in Slate.

Last month, the FDA held a public workshop on this topic. (I spoke on one of the panels, though I have no financial interests in these products.) Based on the discussion paper released ahead of the workshop, it seems that the agency intends to regulate these devices—it just hasn’t quite figured out how to do so. But although the FDA may have the expertise to regulate these devices, the idiosyncrasies of medical device law—namely, the complications regarding “intended use” claims—may not make this the best option, especially given the recent entrance to the market of devices that make no claims at all and instead bill themselves as “direct current sources.” The situation may require a novel solution—such as collaboration between the FDA and CPSC or the involvement of a third party, such as the National Academy of Medicine—to ensure the construction of a coherent framework that best encompasses devices on the market now and anticipates the complex issues that may arise in the future.

Source: How Should We Regulate Those Brain-Zapping Gadgets That Promise to Boost Your Memory?

A pragmatic analysis of the regulation of consumer tDCS devices in the U.S. | Anna Wexler

This is an incredibly well-researched paper. All the nuance of FDA regulation around tDCS and similar devices is made clear. I’ve been picking away at trying to understand this myself, but had become extremely frustrated by the complexity and opacity of FDA jargon and legalese. Anna has collected all the relevant facts and applied them very close to home citing specific devices and situations the DIY tDCS crowd will be familiar with. Anna Wexler is the author as well of The practices of do-it-yourself brain stimulation: implications for ethical considerations and regulatory proposals (gated) . She spoke to myself and at least a handful of other reddit.com/r/tDCS contributors for that paper. In both papers she lays out a very sensible approach to regulating tDCS, or rather, not regulating it. Stating that there is already a body of relevant law stemming from various government agencies (in the U.S.) that could be called upon to regulate tDCS device use as needed.

This paper contributes to the literature on the regulation of consumer brain stimulation devices in the USA by providing a fact-based analysis of the consumer tDCS market and relevant laws and regulations. In the first section, I present a short history of the DIY tDCS movement and the subsequent emergence of DTC devices. In the second and third sections, I outline the basics of FDA medical device regulation and discuss how the definition of a medical device—which focuses on the intended use of the device rather than its mechanism of action—is of paramount importance for discussions of consumer tDCS device regulation. I then discuss how both the FDA and the courts have understood the FDA’s jurisdiction over medical devices in cases where the meaning of ‘intended use’ has been challenged. In the fourth section, I analyse the only instance of tDCS regulatory action to date, in which the California Department of Public Health (CDPH) forced a firm to recall several hundred consumer tDCS devices. Although there exists a common perception that the FDA has not been involved with the regulation of consumer tDCS devices, the California case demonstrates that the CDPH’s actions were instigated by an FDA engineer. Finally, I discuss the multiple US authorities, other than the FDA, that can regulate consumer brain stimulation devices.


Marketing language from the websites of consumer tDCS devices available for purchase as of June 2015.
CONSUMER TDCS DEVICE MARKETING LANGUAGE
Brain Stimulator* https://thebrainstimulator.net/what-is-tdcs/ ‘tDCS allows you to unlock your brain’s true potential’
Cognitive Kit* http://www.cognitivekit.com/ ‘Charge your mind’
tdcs-kit http://www.tdcs-kit.com/ ‘Power your mind’
ApeX Type A* http://www.apexdevice.net/ ‘Be happier. Be focused. Be smarter’
Foc.us* http://www.foc.us/ ‘make your synapses fire faster’, ‘overclock your brain’, ‘take charge’
Thync* http://www.thync.com ‘quiet your mind’, ‘boost your workout’
PriorMind http://www.priormind.com ‘increase your attention span’ ‘tDCS has been widely used to treat depression…’
TCT* http://www.trans-cranial.com ‘when only the best in tDCS therapy will do’
Super Specific Devices* http://www.superspecificdevices.com ‘personal tDCS device’

NYC Neuromodulation Conference 2015 – Abstracts

From a list of abstracts posted by the NYC Neuromodulation Conference. As I understand it, researchers were encouraged to submit abstracts which would then be considered for ‘fast-track oral presentation’ I quote an excerpt from a paper by Anna Wexler () entitled: Understanding the Practices of the Do-it-Yourself Brain Stimulation Community: Implications for Regulatory Proposals and Ethical Discussions. Check out the link below to read the entire list.

I argue that to better contend with the growing ethical and safety concerns surrounding DIY tDCS, we need to understand the practices of the community. This study presents the results of a preliminary inquiry into the DIY tDCS community, with a focus on when and how DIYers draw upon scientific literature and established scientific standards. Analyses are based on open-ended, in-depth interviews with DIYers (as some members call themselves), extensive observations of the main online forum where members communicate, and analyses of videos, websites, and blogs related to DIY tDCS. I show that when making or acquiring a device, DIYers produce, document, and share their own body of knowledge. In contrast, when applying tDCS, DIYers draw heavily on scientific knowledge; where scientific literature is lacking, DIYers experiment and extrapolate. When testing the efficacy of tDCS, DIYers using tDCS for therapy largely rely on subjective feelings, whereas those interested in cognitive enhancement often attempt to mimic the quantification used in scientific studies. I conclude by discussing why it is crucial for neuroscientists to understand how their unintended “second audience” utilizes their research.

via Neuromodulation Conference 2015 Abstracts.