Slides From NIMH-sponsored tES Workshop Held September 29th and 30th at NIH

An email from Michelle Pearson at the NIH (because I had signed up for the online version of the workshop) alerted me today to a trove of TES (Transcranial Electric Stimulation) info being made available to us. Presenter slides (in PDF form) from the workshop were available for download. Because the download process was pretty wonky, involving many clicks and declined logins to Dropbox I thought to make them available here as well.

1-lisanby-introductory-remarks Sarah Hollingsworth Lisanby, M.D., NIH
2-rumsey-introduction Judy Rumsey, Ph.D.
3-wassermann-historical-overview Eric Wassermann, M.D., NINDS
4-parra-tdcs-mechanisms Lucas Parra, co-founder of Soterix Medial Inc. @lcparra1
5-frohlich-tacs-mechanisms @FlavioFrohlich, University of North Carolina-Chapel Hill
6-clark-combining-imaging-and-stimulation Vincent P. Clark, PhD Mind Research Network
7-woods-tes-technical-aspects Adam J. Woods, PhD @adamjwoods
8-richardson-blinding Jessica D. Richardson, Ph.D.
9-kappenman-reproducibility Emily S. Kappenman
10-bikson-computational-modeling-design Marom Bikson, CCNY @MaromBikson
11-deng-anatomical-variability-efields Zhi-De Deng, Ph.D., NIH
12-dmochowski-targeted-stimulation-sources Jacek P. Dmochowski, CCNY
13-loo-depression-trials Colleen Loo, Black Dog Institute
14-brunoni-neuropsychiatry-large-trials André R. Brunoni, @abrunoni
15-cohen-motor-learning Leonardo G. Cohen, M.D. NINDS
16-edwards-augmentation-neurorehabilitation Dylan J. Edwards PhD
17-lim-ongoing-trials Kelvin O. Lim, M.D.
18-frohlich-tacs-psychiatry-trials @FrohlichLab
19-charvet_remote-tdcs Leigh Charvet PhD, NYU

Early Torpedo Fish TES Researcher. From the Wassermann Historical Overview slides

Early Torpedo Fish TES Researcher. From the Wassermann Historical Overview slides

Cloud-Based tDCS Device For Remotely-Supervised Trials

Our ~6 min video about the project! Featuring & ‘s Prof Colleen Loo.

We developed a cellular brain stimulation device as part of our ELEC5622 Sensors, Signals & Health assessment at the University of Sydney. The technique, known as transcranial direct current stimulation (tDCS), uses weak electrical currents to modulate ongoing brain activity, and is a promising treatment for a range of neurological and psychiatric diseases. As the feasibility of administering tDCS at home has recently become an emerging area of research, there is a substantial need for a tDCS device which send data to the clinician in real time.

[Update 11/7/16 The video mentioned has been deleted.]

Taming the black dog—new approaches to depression – All In The Mind – (Australian Broadcasting Corporation)

Or download audio:
http://mpegmedia.abc.net.au/rn/podcast/2014/12/aim_20141207.mp3

Lynne Malcolm: Colleen Loo says that this transcranial direct current stimulation treatment is best used for people with clinical depression who haven’t responded to other treatments. There are very few, if any, side-effects and some participants have even noticed benefits beyond changing their moods.

Colleen Loo: Yes, and this was very exciting. So when we did our first depression trial we were measuring things like memory and thinking…you know, it was just to be safe, to check these things. And one of the things we measured was we asked people to do a test which really showed you how quickly the brain was working. And as people went through the trial they were saying things like, ‘Gee, I don’t know what kind of stimulation I’m having, but it’s almost like my brain clears and I can concentrate and think so much more clearly after the stimulation.’

So we were very excited when we got the end of the study and we formally analysed the results of the formal test, that it showed exactly what people were saying to us, that after the act of stimulation the actual thinking speed was faster, and that has led our team to develop a whole parallel line of research of using TDCS to improve memory and thinking. So our main line of research is in treating depression, but I also have a very promising young researcher who is a clinical neuropsychologist, Dr Donel Martin, who is heading a whole program of research into using this to improve memory and thinking. For example, in people who are older and who are just starting to notice some changes in their memory and thinking.

via Taming the black dog—new approaches to depression – All In The Mind – ABC Radio National (Australian Broadcasting Corporation).

Marom Bikson of Soterix Medical and CUNY – DIY tDCS Podcast Episode #3

Marom Bikson is CEO of Soterix Medical and Associate Professor at City College of New York in the Department of Biomedical Engineering. Marom is a distinguished tDCS scientist and prominent in the development of HD-tDCS. Download the interview here (zipped mp3). (Firefox users- there is an audio player here, but it’s displaying intermittently. Trying to track down the issue. In the meantime you can download the episode or open the page in another browser).

Marom Bikson

Marom Bikson

(We got a good forty minutes of interview in before the Skype gremlins caught up with us. I had to cobble an ending together.)

Show Notes:
Post-Doc, Neurophysiology Unit, University of Birmingham Medical School, U.K., 2003
Ph.D., Biomedical Engineering, Case Western Reserve University Cleveland, OH, 2000
B.S., Biomedical Engineering (EE Concentration), Johns Hopkins University, Baltimore, MD, 1995
Introduction to Transcranial Direct Current Stimulation (tDCS) in Neuropsychiatric Research
5th International Conference on Non-invasive Brain Stimulation 2013

Instrumentation – making medical gizmos, process.
IRB- Institutional Review Board
IRB at the FDA
Small Business Technology Transfer STTR grant.

Soterix partners
Abhishek Datta CTO,
Lucas Parra
Bootstrapped at this point.

Difficulty in engineering medical devices is in designing for the anomalous cases- how that 1 in 999 times situation could go wrong.

Clinical trials. Depression, (Colleen Loo, Blackdog Institute), pain, stroke, epilepsy clinical trials ongoing.

Customizing technologies to match needs of particular clinical situations.

Soterix developed software designed for clinicians.
HDTargeting
HDExplore
Modeling current flow through the head.

Perhaps depression studies are closest to FDA qualification for tDCS?
(Prediction is very hard, especially about the future – Yogi Berra.)

A device (NorDoc Smartstim) that can go to 4mA is being used in a smoking cessation trial? (Trial info indicates 2mA current dose.)

FDA tDCS approval would be device-specific at first.  But would open the door to ‘me too’ mechanism, FDA 510(k)

HD tDCS can have multiple cathodes and or multiple anodes. An array of 4 small anodes splitting 2mA, for example (.5 mA each electrode), can function as an anodal ‘virtual pad’. Assumes cathode somewhere else on the body).

Image By Richard McKinley USAF

Image By Richard McKinley USAF

Tolerability is how tolerable in terms of side effects a medication is.

Transcutaneous Spinal Direct Current Stimulation Example tsDCS paper.

A Theory of tDCS (“Gross oversimplification”) As positive current flows into the cortex it passes neurons.
Because of the nature of neurons, this positive current depolarizes somas (cell’s body), increasing excitability, thereby increasing the functionality & plasticity of that region (hypothesis… “We really don’t know.”). Under the cathode, somas (cells) are being hyper-polarized – excitabilty decreases.

A synapse is a structure that permits a neuron (or nerve cell) to pass an electrical or chemical signal to another cell.
Pyramidal neuron

Titration, also known as titrimetry, is a common laboratory method of quantitative chemical analysis that is used to determine the unknown concentration of an identified analyte.

TES Transcranial Electric Stimulation
“transcranial electrical stimulation” Merton and Morton 1980

“Priming the network in conjunction with applying tDCS makes a lot of sense, as a way to make the tDCS to do what you want.” (Co-priming – The idea that one would initiate an activity first, and THEN add tDCS.)

DARPA supported accelerated learning.

Memory consolidation.
Lisa Marshall

H. Branch Coslett, MD

DIY tDCS community and building medical devices. Redundancy.
tDCS implies proven, vetted protocols, that have been used in clinical trials.

Thanks Marom!

Sydney Researchers Seek Volunteers For New tDCS Depression Study

“We think it probably works by re-setting the activity levels of those nerve cells which tend to be reduced when you’re depressed.” Colleen Loo
From Black Dog Institute, Sydney, Australia

We are looking for:

  • People aged over 18
  • People who have been experiencing feelings of depression for at least 4 weeks prior to study
  • People able to commit to the trial for at least 4 weeks with the option of additional further treatment, attending usually for 40 minutes every weekday.

For more information call 02 9382 3720 or email TMSandDCS@unsw.edu.au

Woman receiving DCS treatment

Watch a demonstration of DCS with a real patient

Download the flyer [PDF, 52KB]

Watch a clip about the study from Channel Ten News