The tolerability of transcranial electrical stimulation used across extended periods in a naturalistic context by healthy individuals

Is it safe? Obviously the test wasn’t designed to assess any possible negative cognitive effects, but apart from some, “skin tingling, itching, and mild burning sensations” the subjects tolerated frequent TES (transcranial electric stimulation) well.

In the present study, we tested the tolerability (safety) and compliance, compared to sham, of two common tES approaches having a current density < 2 mA/cm2; transcranial Direct Current Stimulation (tDCS) or transcranial Pulsed Current Stimulation (tPCS) used by healthy subjects three to five days (17 – 20 minutes per day) per week for up to six weeks in a naturalistic environment. In this study 100 healthy subjects were randomized to one of three treatment groups: tDCS (n = 33), tPCS (n = 30), or sham (n = 37) and blinded to the treatment condition. The tES and sham waveforms were delivered through self-adhering electrodes on the right lateral forehead and back of the neck. We conducted 1905 treatment sessions (636 sham, 623 tDCS, and 646 tPCS sessions) on study volunteers over a six-week period. There were no serious adverse events in any treatment condition.

Source: https://peerj.com/preprints/1097/

YOUR ELECTRIC PHARMACY

Emphasis mine on “but over time it will also gradually rewire your neurons to prevent future attacks.” Very interesting considering the source, Marom Bickson. If you’ve been following the pop press on brain plasticity, you’ve certainly heard the phrase: “Neurons that fire together, wire together.” Could this be a meta-framework for thinking about tDCS?

Head band and controller sourced from CaputronMedical.com

Head band and controller sourced from CaputronMedical.com the green electrode/strap on the right is the Soterix EasyStrap (see below)

Future medications for brain disorders could be delivered through electrodes rather than pills
By Marom Bikson and Peter Toshev

The pharmacist guides you to a shelf of headgear, labeled
with different brain regions. She fits you for a cap, the underside of which features thin conductive metal strips, called electrodes, coated in adhesive gel to stick gently to your scalp.
The electrodes link to a slim cable that dangles from the back of the cap. She then hands over the key component of your prescribed medication: an electric stimulator.
Once a day for the next week you will don the headgear
and plug the cable into this device for a 20-minute dose of
electricity. Setting aside your trepidation, you give it a try in front of the pharmacist. At first you feel only a tingling sensation and then relief.
As you wear the cap, an electric current is traveling from
the electrodes, past hair, scalp and bone, into the brain regions responsible for your migraines. At first it merely blunts the pain, but over time it will also gradually rewire your neurons to prevent future attacks. The pharmacist explains that you will be free to carry on with your day—finish chores, watch television, go for a walk– with the cap on your head, and when the dose is up, the stimulator will simply stop running.
——–
When brain cells activate together, the connections among them grow stronger and more numerous. Cells that seldom fire in concert gradually lose their linkages. Adding tDCS can therefore heighten the brain’s ability to rewire itself—its plasticity.

Source: http://neuralengr.com/wp-content/uploads/2014/10/samind_2014_11.pdf
See also: Zap Your Brain to Health with an Electrode Cap – Scientific American.
And: Giving the Brain a Buzz: The Ultimate in Self-Help or a Dangerous Distraction?

Soterix Accessories page. (I am not affiliated with Soterix or any other product mentioned on this blog).

NEUROMODEC » University of Florida tDCS Workshop 2014

Neuromodec presents

University of Florida: tDCS Workshop 2014

An intensive two-day international meeting dedicated on the design and implementation of tDCS in clinical and research settings. Update on 2014 state-of-the-art methodology with presentations and discussions on the development of professional standards for safety, validity and reproducibility of functional outcomes in tDCS applications.

September 4th & 5th 2014
University of Florida
Clinical Translational Research Building
2004 Mowry Road,
Gainesville, Florida 32610


Workshop Leadership

Adam J. Woods, Ph.D.

tDCS Course Director

Marom Bikson, Ph.D.

tDCS Course Co-Director

Helena Knotkova, Ph.D.

tDCS Course Co-Director

Peter K. Toshev

tDCS Workshop Director

via NEUROMODEC » University of Florida tDCS Workshop 2014.

DIY tDCS Start Here

Featured

New to DIYtDCS? This is the ‘start here’ collection of articles and posts.

  1. DIYtDCS Feed, last 50 articles https://www.diytdcs.com/feed/
  2. My Twitter feed focuses on breaking tDCS research. @DIYtDCS
  3. My Reddit account, where it’s okay to explore the fringes. DIYtDCS
  4. Recommended device? (29V / 2mA model. Promo code ‘diytdcs’ for discount)
  5. Best instruction video for C3/Motorcortex & F3/DLPFC electrode placement.
  6. Is this (tDCS for depression in pregnancy) the first ‘killer app’?
  7. Cognitive Enhancement with Noninvasive Brain Stimulation (video) Roy Hamilton MD
  8. Simple Montage list with electrode placement and research sources.
  9. Marom Bikson & Peter Toshev ‘Your Electric Pharmacy‘ (pdf excellent overview/intro).
  10. My podcast interviews, deep dives into tDCS with key players (iTunes link)
  11. tDCS SubReddit is where the action is. Now with tDCS FAQ!
  12. Dr. Brent Williams’ DIY device and protocol.
  13. Zap your brain into the zone: Fast track to pure focus
  14. Better Living Through Electrochemistry
  15. Clinical tDCS trials seek volunteers. All. Search. (Example: “tDCS AND Los Angeles”)
  16. Neuroscience: Brain buzz Nature Magazine
  17. DLPFC / F3 Locator (you’ll need a tape measure with Centimeters)
  18. Foc.us 3d tDCS Placements Guide Model
  19. NEW! Searchable database of tDCS studies tdcsDatabase.com
  20. 10–20 international system
  21. Kadosh The Stimulated Brain: Cognitive Enhancement Using NIBS