Catching Up With tDCS News

If you’re a Twitter person, follow along here: where I cover more advanced tDCS-related news.

In new work Jonides in presenting at the CNS conference, he and colleagues have found that tDCS has a robust effect on working memory, with enhancements lasting over a course of months. “Previous research has been equivocal about whether tDCS enhances training, and there have been no long-term investigations of how long that training effect lasts,” Jonides says.

In the new study, 62 participants randomly received tDCS stimulation to either the right or left prefrontal cortex or received sham stimulation while performing a visuospatial working memory task. After 7 training sessions, those who received the tDCS stimulation had increased working memory capabilities, even several months after completing their training. They also found that those who receive stimulation on the right prefrontal cortex had selective ability to transfer the working memory to non-trained tasks.

I will definitely be following up on this one. Neuroscientists working to test brain training claims 4/5/16

Here, we review the recent research that has explored the effects of tDCS on WM (working memory) in healthy young adults, older adults, and patient populations. We also discuss several recent meta-analyses that have examined the efficacy of tDCS as a WM intervention. While a majority of the papers reviewed suggest that tDCS can modulate WM, this effect is highly inconsistent. These seemingly conflicting results may be driven by differences in study design, tDCS protocol, or inter-individual differences.

Meta research paper looks years of tDCS working memory research. Interesting and useful, in the list of papers they cite they add (highlighted) the particular significance of that paper. Uncertainty and Promise: the Effects of Transcranial Direct Current Stimulation on Working Memory  4/5/16

Those advantages appeal to the DIY users as well. On Reddit’s tDCS community, many anonymous users describe using the technique to treat mental disorders, including depression and anxiety. Alexander Mark is one of them. A 63-year-old Michigan resident, he says, “I am afflicted with Bipolar Disorder II, and learned about tDCS in an effort to find a way to relieve myself of the severe depression that often comes with the illness.” He began trying it when his medication proved ineffective (though that’s no longer the case), and he’s only had a single negative experience—when he misplaced an electrode. (He currently uses the Chattanooga Ionto iontophoresis system, which sells for about $700 through third-party merchants on Amazon.)

Article also discusses a Direct To Consumer tDCS device that didn’t do so well in their tests. The promise and peril of DIY electrical brain stimulation By Anna Denejkina 4/10/16

I would argue that the fine tradition of self-experimentation can be harnessed, if structures are created that allow at-home users to contribute their experiences to a common store of knowledge. At present online sharing of tDCS experiences is haphazard, and is restricted to the more anarchic fringes of the internet. However, those communities are generating potentially valuable information, which could be of great interest to researchers and to manufacturers. At-home and DIY users frequently stretch the limits of protocols, delivering higher current for greater amounts of time.17 Bringing at-home users into the fold will provide useful information about safe and unsafe protocols, and will generate important information about the milder side-effects of tDCS that are thought to be under-reported by researchers

In his paper The regulation of consumer tDCS: engaging a community of creative self-experimenters, Nick Davis makes the case that there is the potential for home-use DIY users to contribute to our understanding of tDCS. 4/5/16

Tyler, who co-founded Thync and recently returned to academia as an associate professor at Arizona State University, says such concerns are legitimate. Yet he is certain that they can be overcome and that medical-grade brain devices will one day be commonplace and able to, for example, relieve the pain of migraines or treat debilitating neurological conditions.

“Yes, a lot more work still needs to be done,” he said. “But the technology holds tremendous promise. It’s not just about us saying we’re going to stimulate the nerves so you can chill.”

Mostly about the Thync (not tDCS) device. Note that Jamie Tyler, who was a co-founder and lead scientist at Thync, has returned to academia (and I’ll hazard a guess, to his first love, transcranial pulsed ultrasound stimulation). Brain-zapping gadgets promise to make you a better you — smarter, stronger, even happier. 3/29/16


My Thoughts On Thync

When I started this blog in 2012 friends and family thought I was crazy. But I knew something interesting was happening and now that we’re seeing all this VC money flowing into the space it’s obvious something IS happening. Still too early to tell what will become of all this, but a single ‘killer app’ (provable, repeatable, without side-effects) could launch tDCS, or another form of non-invasive brain stimulation, into the mainstream.
I wonder if Thync’s announcement took Halo Neuroscience by surprise (probably not). Considering how simple a tDCS device is to make, it will be interesting to see if add-ons can make individual devices truly patentable – I’m thinking built-in feedback and monitoring etc.
And this on Thync’s About page from Marom Bikson! This is interesting in itself because Dr. Bikson has been critical of efforts to commercialize tDCS in the consumer space (especially the device, but generally cautious)

“Dr. Jamie Tyler has built an extraordinary team of scientists and engineers at Thync who are creating consumer devices that achieve a level of neuromodulation performance, safety, and ease-of-use that is a categorical advance for the field.”

Looking into the list of scientific publications Thync lists on their site, I would have to conclude that perhaps their focus is more on transcranial pulsed ultrasound (TPU) than tDCS. And look! DARPA has also been funding research in TPU.  [Update: Thync confirmed their first device will be tDCS based.]

Thync ‏@thync
@DIYtDCS Thank you for the inquiry. We have deep knowledge of both. Our first product will be around #tDCS.

Here, from Thync’s website, they lay out the technological foundation of their ‘Vibes’ product.

Founded on decades of research and results using transcranial pulsed ultrasound (tPU), transcranial direct current stimulation (tDCS) and other transcranial electrical stimulation (tES) methods, Thync elevates these breakthroughs in neuroscience to a new place in lifestyle technology.

We have developed proprietary neurosignaling waveforms that target neural pathways via a mechanistic triad:
• BRAIN: prefrontal and frontoparietal brain regions
• NERVES: sensory fibers of cranial nerves
• MUSCLE: neuromuscular fibers


A secure Bluetooth Low Energy network enables users to control and tune neurosignaling waveforms to optimize their experience while shifting mindset in a personalized manner.

Aha! From a Business Week article tweeted by Marom Bikson, (implying their device, at least initially is more likely to be tDCS based):

Thync pursued Tyler’s ultrasound techniques for the first year, until the founders learned about studies conducted at the Wright-Patterson Air Force Base in Dayton, where researchers had tried to improve pilots’ cognitive abilities with electrical stimulation. Reasoning that the electrical method, with its rapidly improving science, offered a safer, quicker route to the market, Thync switched gears. Since then, the company has worked to shrink the electrodes and develop its algorithms to produce a reliable, comfortable experience.

For the past 18 months, Thync has tested its “vibes” on more than 2,000 people in clinical trials at its Boston office and the City College of New York. Some subjects didn’t respond to the treatment at all—it doesn’t work for everybody—but the company reached a milestone when two out of three respondents started to regularly say the sensations were more powerful than the placebo effect. “Most people rate it as a moderate to strong response,” Goldwasser says of the energy vibe, “or at least as good as a few cups of coffee.”

Prof. Bikson is co-director of Neural Engineering at The City College of New York so it stands to reason he was involved in the testing. When I asked him via Twitter he said:

CCNY completed 90 subject 6-week (5 session per week) trial using Thync and Soterix tech. Exciting details and results coming soon.

Excited to see the results of these tests. Also, as long as we are heading into the consumer space, it’s great to have Dr. Bikson involved.
The product is set to launch in 2015. I’ll be following closely…

Update 10/12/14 Following up on Mika’s observation (see comments)…

P.S. Thync hit it out of the park with the naming of their company/domain/Twitter handle.


See Also:
Thync Lets You Give Your Mind a Jolt
Thync’s Wearable Won’t Just Measure Your Mood, It Will Fix It – IEEE Spectrum.
Thync to Launch First Mood-Altering Wearable With $13M Led by Khosla
Thync Has Raised $13M To Change Your Mood With Ultrasound Waves (And Electricity)
Wearable tech to hack your brain | CNNTech 10/23/14