Electroceuticals: the Shocking Future of Brain Zapping | Motherboard

Okay, I think we’re on the edge of a shift in thinking. Here’s prof. Bikson referring to 2mA as ‘baby aspirin’ and pointing out that ‘the dose  hasn’t increased in 15 years’. Combine this with the revelation (previous post to the blog) that the Thync device is using up to 10mA (pulsed current) and that much of the experiments that went on with the Thync device were conducted by Bikson and you can’t help but conclude that researchers are ready to up the dosage. But that was one of my very first questions and I asked it far and wide, ‘Why 2mA?’.

“There’s already technology available today that can, with limited discomfort or no discomfort, deliver much higher intensities than people are using. And there’s no theoretical—not even real—reason to think that this might be hazardous,” Bikson says. “We’re at baby aspirin levels right now. [Researchers] are going really slow with this stuff.”

So why not ramp up the experiments? Researchers have to be especially cautious because of how new the science of tDCS is—and perhaps to avoid the horrors that have been observed to coincide with ECT.

“Part of the reason why people are on the fence is because the effects are small, [but] of course they’re small. The dose has not increased in 15 years,” Bikson says.

But Bikson says that might be keeping them from making real headway—and from having the sort of impact on test subjects that would get the medical community engaged with this stuff.

via Electroceuticals: the Shocking Future of Brain Zapping | Motherboard.

Coming Soon—Electronic Mood Control | MIT Technology Review


If Tyler is right, it could explain why tDCS results have been so hard to replicate. Researchers position tDCS electrodes based on the assumption that they affect the areas of the brain directly below. But sometimes they may be accidentally stimulating the cranial nerves instead, leading to inconsistent results. Based on his new hypothesis, Tyler changed where he placed the electrodes, targeting these nerves specifically.

Early experiments showed enough of an effect to suggest the hypothesis was right, Tyler says. But the effects weren’t huge. The next step was to amplify the effect by increasing current levels without causing pain or skin damage. Researchers at Thync, which was founded in 2011, did this in part by using pulses of electricity, rather than steady current, and operating at frequencies that don’t stimulate pain receptors.

I experienced the difference that these measures make when I tried out a conventional tDCS device side-by-side with Thync’s technology. At three or four milliamps of electrical current, conventional tDCS was quite painful. That’s why most experiments are done at around one milliamp. In contrast, I couldn’t even feel the pulses from Thync’s device at 10 milliamps.

via Coming Soon—Electronic Mood Control | MIT Technology Review.

tDSC Papers of Note April 2013

Regional personalized electrodes to select transcranial current stimulation target (pdf)
…with the present work we developed a procedure to properly shape the stimulating

(The familiar looking square electrodes were the reference electrodes.)
Tags: electrodes, tACS

The Sertraline vs Electrical Current Therapy for Treating Depression Clinical StudyResults From a Factorial, Randomized, Controlled Trial (pdf)
At the main end point, there was a significant difference in Montgomery-Asberg Depression Rating Scale scores when comparing the combined treatment group (sertraline/active tDCS) vs sertraline only, tDCS only, and placebo/sham tDCS… There were 7 episodes of treatment-emergent mania or hypomania, 5 occurring in the combined treatment group.
Tags: depression

Noninvasive transcranial direct current stimulation over the left prefrontal cortex facilitates cognitive flexibility in tool use (pdf)
The results support the hypothesis that certain tasks may benefit from a state of diminished cognitive control.
And a related news story discussing the same paper.
Brain hacking: Electrifying your creative side
Each person was shown pictures of everyday objects and asked to come up with a new uses for them.
The group which received the TDCS muting the left prefrontal cortex was better in coming up with unusual uses than the others — and did it faster.
Tags: creativity, Sharon Thompson-Schill, cathodal stimulation,

 Orchestrating neuronal networks: sustained after-effects of transcranial alternating current stimulation depend upon brain states (pdf)
Long lasting after-effects foster the role of tACS as a tool for non-invasive brain stimulation and demonstrate the potential for therapeutic application to reestablish the balance of altered brain oscillations.
Tags: tACS

Different Current Intensities of Anodal Transcranial Direct Current Stimulation Do Not Differentially Modulate Motor Cortex Plasticity (pdf)
targeting M1 …10 minutes of anodal tDCS at 0.8, 1.0, and 1.2 mA
These results suggest that the aftereffect of anodal tDCS on facilitating cortical excitability is due to the modulation of synaptic mechanisms associated with long-term potentiation and is not influenced by different tDCS intensities.
Tags: M1, dosage

Transcranial direct-current stimulation increases extracellular dopamine levels in the rat striatum (pdf)
Following the application of cathodal, but not anodal, tDCS for 10 min, extracellular dopamine levels increased for more than 400 min in the striatum. There were no significant changes in extracellular serotonin levels.
Tags: dopamine

Spark of Genius: A new technology promises to supercharge your brain with electricity. Is it too good to be true?
Surprisingly good pop-sci overview of where we’re at with tDCS. Chock full of relevant links.

Using computational models in tDCS research and clinical trials (pdf)
Hypothesis: Appropriately applied computational models are pivotal for rational tDCS dose selection.
Tags: Comptational modeling, Marom Bikson,

Boosting brain functions: Improving executive functions with behavioral training, neurostimulation, and neurofeedback  (pdf)
This review provides a synopsis of two lines of research, investigating the enhancement of capabilities in executive functioning: a) computerized behavioral trainings, and b) approaches for direct neuromodulation (neurofeedback and transcranial electrostimulation).
Tags: cognitive enhancement

Focal Modulation of the Primary Motor Cortex in Fibromyalgia Using 4×1-Ring High-Definition Transcranial Direct Current Stimulation (HD-tDCS): Immediate and Delayed Analgesic Effects of Cathodal and Anodal Stimulation (pdf)
We found that both active stimulation conditions led to significant reduction in overall perceived pain as compared to sham.
Tags: Fibromyalgia, HD-tDCS, Marom Bikson, pain