Another DIY tDCS Video

Hard to imagine how he’d have learned enough about tDCS to build a device, but have gotten the (typical) montage so wrong. Placing the cathode over left DLPFC and anode over right orbital is exactly the opposite of what you’ll find in most studies related to both depression and working memory. He doesn’t go into how he’s constructed his electrodes at all. Anecdotally, it is interesting that the reverse montage made him feel angry and depressed.

 

Marom Bikson’s ‘tDCS State of the Art’ Lecture Now On YouTube

There’s just so much going on in tDCS right now that it’s hard to keep track. Coupled with the fact that I don’t have a Uni account that lets me access new paper (although I’ve had some help there from time to time). One of my objectives is to understand what’s going on well enough to present you with an accurate overview of what’s new. But lately research papers are coming so quickly that it’s been overwhelming.

But here’s my take-away from Marom’s lecture: Electrode placement does not necessarily correlate with current flow! At least not the way one might assume. Watch the videos to get a clear picture.

 

Dave Siever – Mind Alive Revisited

We met Dave earlier on the blog. His company, Mind Alive Inc. operates out of Edmonton, Canada and sells a wide variety of ‘mind machines‘, including the Oasis Pro, which can be used for tDCS. Medical devices are controlled differently in Canada, the EU, and the U.S. About tDCS devices…

In Canada, it is not considered a medical device when used in a cognitiveneuroscience application.

I need to do a deep dive with an expert at some point, but for now, let’s operate under the assumption that it’s much easier to get a tDCS device in Canada or Europe. According to the Mind Alive ordering page, there does not seem to be anything special or awkward about ordering one of their devices. (I have no affiliation with Mind Alive).

Here Dave gives an overview of tDCS, how it’s theorized to work, and includes a set of tDCS montages for various purposes. Excellent!

 

Dr. Vince Clark University of New Mexico

[Update 10/19] Dr. Clark’s TEDxUNM just in. tDCS starts around 6:45

Dr. Clark is a pioneer of tDCS research. He recently spoke at TEDxUNM (TED talk at the University of New Mexico). I’m eagerly awaiting a video of his talk and will post it as soon as it becomes available. In the intro to Dr. Clark’s talk I found this amazing story.

You really need to read the full story. It outlines Dr. Clark’s journey to diagnose a rare disease that affected his 9 year old boy. tDCS is one of 3 treatment modalities he discussed in his talk…

Clark is already using tDCS to help treat drug addicts and reduce symp­toms in peo­ple with Parkinson’s dis­ease. As a part of this research, Clark is exam­in­ing the abil­ity to use tDCS to treat chronic pain, which he learned about while try­ing to find ways to reduce the amount of pain Ryan suf­fered.  He’s been col­lab­o­rat­ing with other research groups that are hav­ing suc­cess using this pro­ce­dure to reduce pain.

“It might be the first time that some­one has come up with a way to treat pain con­sis­tently, but with­out using a drug,” he added.

Update 10/1/12 Dr. Clark is involved in a new site which “is meant to offer information and links about medical alternatives that are cheaper, safer and more effective than the current standard of care.” SmallerMedicine.com (links to tDCS page).

Anthony Lee Update

Anthony Lee shared the results of his most recent tDCS experiments on Reddit the other night (9/8/12). Using the Cambridge Brain Science Challenge (a set of four tests), he charted his scores over a two month period, comparing results with and without tDCS applied. Check out the video, and if you have questions for Anthony, post them to his Reddit thread.

Alan Snyder and Michael Weisend on Through The Wormhole

Ted pointed this out to me in a comment. We’ve met both Alan Snyder and Michael Weisend elsewhere on the blog. This video sums up nicely the areas they’re working in. Anyone else alarmed at the thought of there being a pressing need to fill drone pilot seats and that perhaps tDCS could cut training time in half?

Photo links to YouTube video.

Michael-Weisend-Mind-Research-Network

Michael Weisend Mind Research Network

Obviously we don’t have access to fMRI, yet. But the method Wesiend is demonstrating in the video certainly seems the way to go: Isolate the area of the brain used in the desired skill, and then apply tDCS to facilitate learning.

This is definitely a pattern-recognition type of experiment.

fMRI Showing Medial Temporal Lobe Activity

fMRI Showing Medial Temporal Lobe Activity

…When you are a novice, there’s low-level activation in the medial temporal lobes. But in experts, there’s very high-level activation. And so we targeted tDCS at these areas that increase activity in order to accelerate training. (This is context of drone pilot training)

ActivaDose Device

ActivaDose Device

electrode

Electrode

electrode harness

Electrode Harness

I need help identifying and understanding this electrode setup. Note that it’s the same electrode being used in this shot from a Scientific America article discussing the same research. If there was an electrode in the middle of the cluster, that might be the Anode and the surrounding electrodes could be Cathodes (as seems to be what is developing around HD-tDCS). But a symmetrical 5 node electrode cluster is confusing me.

Image By Richard McKinley USAF

I was trying to understand why Soterix (Marom Bikson) would be developing devices that could administer 8 channels of tDCS simultaneously. Putting the pieces of these articles, papers, and videos together, it becomes pretty clear that tDCS, used to enhance training, especially in military (DOD) contexts, could be hugely profitable.

P.S. In this study, published in the Jan 2012 issue of Neuroimage, Weisend reports using fMRI to locate optimal tDCS application area. Unfortunately, it’s behind a paywall.
TDCS guided using fMRI significantly accelerates learning to identify concealed objects
.

Anodal 2.0 mA tDCS performed for 30 min over these regions in a series of single-blind, randomized studies resulted in significant improvements in learning and performance compared with 0.1 mA tDCS. This difference in performance increased to a factor of two after a one-hour delay. A dose-response effect of current strength on learning was also found.

Tali Sharot: The optimism bias

At around minute 13, Tali Sharot describes how she and collaborator Dr Ryota Kanai were able to influence the outcome of experiments designed to test optimism bias by applying TMS (transcranial magnetic stimulation). Amazing!

Dr. Tali Sharot at Institute of Cognitive Neuroscience at University College of London
Dr Ryota Kanai
Search for ‘transcranial direct current’ at ICN

One way to think about this (very generally) is that, in this case, TMS had both a positive and negative impact. This should also serve as cautionary to anyone self-experimenting with tDCS.

I recently reached out to Dr. Mark Beeman of Northwestern around the subject of testing the efficacy of tDCS especially in the context of DIY. I became aware of Dr. Beeman’s work through the new Jonah Lehrer book, ‘Imagine’. (I haven’t read it actually, but have listened to Lehrer discuss the book at length in numerous podcasts.) Dr. Beeman took the time to respond to my email stating that he was in fact at work on some experiments that use tDCS. About self-experiments, he had this to say…

I’d be hesitant to do too much self-experimentation. Not that I worry about causing direct damage, but brain activity is often a delicate balance, and enhancing some process may have adverse effects on another.

I also heard back from the  Laboratory of Cognition and Neural Stimulation at the University of Pennsylvania. They are who posted the questionnaire. Basically it was just a follow-up email asking more questions. I have yet to correspond with anyone personally and they have so far signed their emails as Research Specialist.

CBS News tDCS ‘Might seem shocking!’

You can clearly see the device used, Phoresor II Auto PM850, which I found for around $1k. But I also found a similar, medical-grade device, the Trivarion ActivaDose Phoresor, available here for $250. It seems to be in a family of medical device that is used to deliver water soluble drugs via the skin. More here.
The CBS video is from 2008!

Go Flo Team’s Funfomercial

Hmm, are these guys out of the same Michigan University that just published the tDCS paper in ‘Headache’?
Their kit will be Open Sourced. Learn more about Go Flow at http://flowstateengaged.com.
I signed up for the mailing list. If they can really build a no-solder kit for $99 I’m getting one!

This video was made to make our friends laugh. Please do not take this video as a serious attempt at promoting our kit. We sure didn’t.

University of Michigan News Service | Migraine patients find pain relief in electrical brain stimulation

“We went beyond, ‘OK, this works,'” DaSilva said. “We also showed what possible areas of the brain are affected by the therapy.”

They did this by using a high-resolution computational model. They correctly predicted that the electric current would go where directed by the electrodes placed on the subject’s head, but the current also flowed through other critical regions of the brain associated with how we perceive and modulate pain.

“Previously, it was thought that the electric current would only go into the most superficial areas of the cortex,” DaSilva said. “We found that pain-related areas very deep in the brain could be targeted.”

via University of Michigan News Service | Migraine patients find pain relief in electrical brain stimulation.