Dr. Jim Fugedy of the Brain Stimulation Clinic in Atlanta – DIY tDCS Podcast #2

[Apologies for audio quality. It won’t happen again.]

Dr. Jim Fugedy runs the Brain Stimulation Clinic, in Atlanta, GA, and has been treating patients using tDCS since 2007. Download the interview here (zipped mp3).

Dr. Jim Fugedy

Dr. Jim Fugedy

The Brain Stimulation Clinic in Atlanta is the destination for memory and learning enhancement and treatment-resistant patients who suffer from chronic pain, fibromyalgia, migraine headaches, CRPS, depression and tinnitus. Transcranial direct current stimulation (tDCS) therapy is provided in a pleasant, relaxing environment. Instruction, training and supervision for home use is also available for select patients.

Show Notes:
Jim is an anesthesiologist.
The study Jim refers to regarding Felipe Fregni & fibromyalgia:
A randomized, sham-controlled, proof of principle study of transcranial direct current stimulation for the treatment of pain in fibromyalgia (full pdf)
tDCS for treatment of fibromyalgia is not certified – it’s ‘off label’
Device is certified, but not for tDCS = no insurance code, can’t be billed to insurance
20 minute treatment for 5 days.
For fibromyalgia – reduces pain, improves issues – fatigue, compromised mental function
2″ electrodes
(ActivaDose ii Update 3/16 now available as complete tDCS kit through Caputron Medical, use voucher code ‘diytdcs’ for generous discount.)
Most benefit… chronic depression, treatment protocol based on Colleen Loo, Black Dog Institute 6 weeks, follow up maintenance. Up to 8 weeks of treatment + 1-2 treatments follow up maintenance.  Daily 20 minute sessions
Can be treated at the clinic for 1-2 weeks. Or home treatment package.
“To treat depression, I place the anode over the left dlpfc (left dorsolateral prefrontal cortex) and the cathode over the contralateral supraorbital area. I have tried positioning the cathode over the contralateral dlpfc and extracephalically (opposite shoulder or upper arm), but the contralateral supraorbital locations provides the most robust effect.” (Correspondence)
Pain montage 2mA, anode M1 & cathode contralateral supra-orbital area

A-M1-C-contralateral-supraorbital

anode at the right primary motor cortex (M1)–cathode on the left supra-orbital From: http://www.sciencedirect.com/science/article/pii/S1053811907000055

For chronic pain, the M1 is the most used area and that’s almost always my first choice.  But you can use the cathode over the somatosensory (S1) cortex, to down-regulate the patient’s perception of pain.
And you can also stimulate the Dorsalateral prefrontal cortex which is involved in the emotional component of pain.
Looking at stimulating right dorsalateral prefrontal cortex to attenuate anxiety.
… it may be a location
for the non-pharmaceutical treatment for ADD.
Office visit $150.
Home use treatment package $2400 includes in-office evaluation and training, ActivaDose ii device, electrodes, and unlimited follow-up via visit,  phone, skype…
Only side effect Jim has seen is skin burn (but easily avoided with sponge electrodes).
(Patient with skin burns who’d been treated by a doctor using electroencephalogram (EEG) electrodes.)
Tinnitus responds well, though temporarily, to tDCS
Anode, right dorsalateral prefrontal cortex, cortex opposite supra-orbital
Harvard one day course on how to treat with tDCS. Taught 3-4 times a year.
Contrast with approved Electromagnetic treatment for depression (I think he’s referring to TMS transcranial magnetic stimulation here) A 6 week 30 treatment protocol costs between $10-15,000. Affects last about 6 months. And even though it’s certified, it’s not covered by insurance.
…”in the 12 years that it’s been used there have been no side effects reported other than skin (irritations).
“You know we hear stories about Canadians having to wait for surgery. But in the United States, if you don’t have the money and you don’t have insurance,  you don’t have to worry about waiting, you won’t get the surgery.”

You can reach Jim at: doctorfugedy [theAtSignHere] transcranialbrainstimulation.com
Thanks Jim!

Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory – Springer

[Update 12/17/2012 Another paper discussing the efficacy of using tDCS to enhance working memory. Transcranial direct current stimulation of the prefrontal cortex modulates working memory performance: combined behavioural and electrophysiological evidence]

Working memory, as associated with ‘brain training’ and ‘plasticity‘, is often expressed as what one would wish to have more of, or at the very least, what one hopes not to lose as we age. (For a great overview of working memory and the how’s of enhancing it, see this fascinating post from neuroscientist Bradley Voytek’s blog  Working memory and cognitive enhancement.)

Our aim was to determine whether anodal transcranial direct current stimulation, which enhances brain cortical excitability and activity, would modify performance in a sequential-letter working memory task when administered to the dorsolateral prefrontal cortex DLPFC. Fifteen subjects underwent a three-back working memory task based on letters. This task was performed during sham and anodal stimulation applied over the left DLPFC. Moreover seven of these subjects performed the same task, but with inverse polarity cathodal stimulation of the left DLPFC and anodal stimulation of the primary motor cortex M1. Our results indicate that only anodal stimulation of the left prefrontal cortex, but not cathodal stimulation of left DLPFC or anodal stimulation of M1, increases the accuracy of the task performance when compared to sham stimulation of the same area. This accuracy enhancement during active stimulation cannot be accounted for by slowed responses, as response times were not changed by stimulation. Our results indicate that left prefrontal anodal stimulation leads to an enhancement of working memory performance. Furthermore, this effect depends on the stimulation polarity and is specific to the site of stimulation. This result may be helpful to develop future interventions aiming at clinical benefits.

via Anodal transcranial direct current stimulation of prefrontal cortex enhances working memory – Springer.
full pdf

This 2011 paper does confirm positive results of tDCS in a similar application and test setup. Improving working memory: exploring the effect of transcranial random noise stimulation and transcranial direct current stimulation on the dorsolateral prefrontal cortex.

However, the study does provide confirmation of previous findings that anodal tDCS enhances some aspects of DLPFC functioning.