DIY tDCS Start Here

Featured

New to DIYtDCS? This is the ‘start here’ collection of articles and posts.

  1. DIYtDCS Feed, last 50 articles http://www.diytdcs.com/feed/
  2. My Twitter feed focuses on breaking tDCS research. @DIYtDCS
  3. My Reddit account, where it’s okay to explore the fringes. DIYtDCS
  4. Recommended device? (29V / 2mA model. Promo code ‘diytdcs’ for discount)
  5. Best instruction video for C3/Motorcortex & F3/DLPFC electrode placement.
  6. Is this (tDCS for depression in pregnancy) the first ‘killer app’?
  7. Cognitive Enhancement with Noninvasive Brain Stimulation (video) Roy Hamilton MD
  8. Simple Montage list with electrode placement and research sources.
  9. Marom Bikson & Peter Toshev ‘Your Electric Pharmacy‘ (excellent overview/intro).
  10. Marom Bikson Presentation on State of the Art tDCS 8/13.
  11. My podcast interviews – deep dives into tDCS with key players (iTunes link)
  12. tDCS SubReddit is where the action is. Now with tDCS FAQ!
  13. An ‘Open tDCS’ project.
  14. Dr. Brent Williams’ DIY device and protocol.
  15. Zap your brain into the zone: Fast track to pure focus
  16. Better Living Through Electrochemistry
  17. Clinical tDCS trials seek volunteers. All. Search. (Example: “tDCS AND Los Angeles”)
  18. Neuroscience: Brain buzz Nature Magazine
  19. DLPFC / F3 Locator (you’ll need a tape measure with Centimeters)
  20. Searchable database of tDCS articles from trans-cranial.com
  21. 10–20 international system
  22. Kadosh The Stimulated Brain: Cognitive Enhancement Using NIBS

Halo Sport Test for Guitar – the Conclusion | TomboLP Youtube

In the spirit of fairness, I’m posting this musician’s experience of using the Halo Sport for guitar training. Unlike Mario and his piano experience, this fellow, TomboLP, ultimately found no added benefit, though in earlier videos (this is the part 5 of 5) he was excited by what he assumed were positive results.

This is the last video in my test of the Halo Sport. As I didn’t reach the goals I set for myself in the time allotted and feel that there were no gains that couldn’t be otherwise explained by practice, I have now returned the headset. Even though the product didn’t work out for me, I will say that the return process was very straightforward and hassle-free.

Caputron Now Carrying Foc.us V2 Device

Robin at Caputron dropped me a note to let me know they are now carrying the Foc.us V2 device. Purchased alone, it does not include electrodes, but there is an option to add their ‘starter kit’ which includes the Caputron Universal Strap, Caputron Banana Adapter Cable for Focus Device, and Choice of 2×2 or 3×3 Electrodes. (Use diytdcs at checkout for generous discount). Foc.us V2 Device at Caputron.
If what attracted you to tDCS is all the news (and hype) around the possible benefits, cognitive and otherwise, that tDCS may provide, then I recommend the Foc.us V2 device. It’s had a thorough going over, and apart from the (then included) electrodes, proved to be an amazing piece of gear. tDCS, tACS, tRNS, tPCS in a single sub $300 unit with a software interface!

Elsewhere on the blog I’ve stated that I recommend the ActivaDose ll device. This is an FDA approved device – it’s NOT FDA approved for tDCS – it’s approval is for use as an Iontophoresis device. The point is that the electronics and workmanship have attained an FDA level of approval. It’s simple and straightforward to use.

The only reason I haven’t recommended other tDCS devices on the market is because I’m not in a position to analyze the quality of their workmanship myself. I recommend the Activadose ll because people looking to experiment with tDCS for the treatment of depression can’t be assumed to have a toolset for determining the mechanical workmanship of an electrical device they’re going to be attaching to their heads! The Activadose ll, an FDA approved device, at least assures the buyer the device itself is of high quality. It’s also more likely to retain some resale value in the event someone decides later on to sell it.

I recommend the Foc.us V2 because of it’s variety of stimulation modes. Folks who are sophisticated enough about neurostimulation to be experimenting with cognitive enhancement would obviously benefit from having the option to test other forms of stimulation that frequently come up in the scientific literature.

When you use code diytdcs at checkout at  Caputron you get a discount, and I get a small commission.

A Dancer, Musician, Jogger & Handball Player Try Halo Sport | Mario Marzo

I do hope to understand this better. Is it just that he was so impressed with his own Halo Sport experience that he was motivated to tell the world about it? Is it that Mario is a YouTube content creator and knew this would be compelling content? I will update the post as I learn more.

And here is the video Mario made in November, 2016 where he describes the impact using Halo Sport had on his piano playing.

Hey Mario, If you’re reading this drop me a line, I’d like to talk to you.

TMS For Depression Making Inroads Into Mainstream

Insurers are starting to cover TMS for depression (after determining that SSRIs or other medications aren’t working for the patient). A full course, 24-36 treatments, of TMS can cost well over $10k. Though this is purely conjecture on my part, one way tDCS might make it into the mainstream is as a method to ‘top up’ post-TMS treatment as effects begin to fade.

Published on Jun 19, 2017 | YouTube UCLA
As the number of people suffering from depression rises, doctors are looking for new, more targeted ways to treat it. One approach used by doctors at UCLA and a handful of other centers nationwide is to beam magnetic pulses deep into patients’ brains, a therapy known as transcranial magnetic stimulation (TMS). The therapy is time-consuming, and only a few hospitals or clinics offer it, but its ability to work in a fundamentally different way from medications is also what makes it so promising for people not helped by drugs.

Can You Use Electricity to Supercharge Your Brain? | Hank Green

Wow! No less than Hank Green ( of the Vlog Brothers) covering tDCS on his SciShow Psych! He sounds a little skeptical! So we have that in common. I pretty much agree with Hank’s perspective, just a couple of thoughts I’d like to share.

Most companies (but not all) know better than to make claims about tDCS. They know they have to be careful making claims of benefits. So where you see a company making a claim, they are most likely basing the claim on legit science. But are the benefits replicable in your situation? Hank refers to the (science) literature as ‘messy’ and he’s right, with different labs coming to opposite conclusions using basically the same experiment protocols.

Hank characterizes the basic function of tDCS as being a training session for neurons. Over time, with repeated stimulation, those neurons will start to fire more. While this is a legitimate description of the approach some research takes, I think a better way to think of it is that tDCS makes it easier for neurons that are already inclined to fire, to do so. As in- you’re focused on a “Where’s Waldo” task, and with the proper stimulation, the task is easier to do, because the targeted neurons have less resistance to firing.

Anthony’s Back!

This video is no longer available because the YouTube account associated with this video has been terminated.

We saw a lot of Anthony Lee and his tDCS experiments back around 2012-13. He popped up on YT recently and I’m happy to share his update.

The device he mentions near the end of his video is the Chattanooga Dual-Channel Iontophoresis Device which is also available at Caputron.

Mike Weisend | FutureTech Podcast

Mike Weisend – Treating the Brain from the Outside
We met Michael Weisend back in podcast #4 (March 2013!) and have been following along ever since. In this interview Mike discusses what he’s been up to at Rio Grande Neurosciences. What caught my ear especially were the discussion around ‘closed-loop TES’, where EEG information informs when and where to stimulate with TES. Also, his discussion of personalized disposable bio-degradeable electrodes was interesting. Mike closes the interview with an invitation to anyone knowing how to engineer an ‘EEG amplifier’ that would allow for the separation of EEG data and active TES stimulation, to contact him. (mike.weisend [theAtSign] riograndneurosciences.com). Kudos to Richard Jacobs for an interesting interview.

Transcranial Electrical Stimulation: A Stimulating Discussion of Current Research

In the third section of his talk (around 30 minute mark), Dr. McConnell discusses an experiment they are working on that uses EEG to monitor sleep, and according to their protocol, turn on a TES device (tACS-like) in order to induce slow wave EEG activity. The practical application is improved memory consolidation in Alzheimer’s patients. Very interesting!

Published on May 14, 2017 Neurology Grand Rounds 3 May 2017 – Transcranial Electrical Stimulation: A Stimulating Discussion of Current Research.

Brice McConnell, MD, PhD
Instructor/Fellow, Neurology
University of Colorado

Sooma tDCS

Finnish company Sooma manufactures and supports a tDCS device for the treatment of depression (in Europe). They recently added clearance to treat pain in Canada, and I would assume, are aggressively working towards clearing their device for the treatment of depression in Canada and the U.S.

I would recommend muting the sound (captioned so not necessary) in these next two.

DIY tDCS YouTube Catch Up

If you follow the blog you’ll know I’m not savvy enough in the ways of electronics to know a well-constructed DIY circuit when I see it. I’ve generally depended on the Reddit crowd to sort through the pros and cons of DIY tDCS circuit design. Now that there are a handful of professionally developed and readily available devices on the market, I’m not seeing as many DIY projects, but here’s a couple that popped up on Youtube in the last week or so.

DIY tDCS Secrets Revealed! Brain Hacking stancurtin


tDCS DIY Device Tutorial NeuoHacking

Brain Stimulation | AirmanMagazineOnline

  Published on Mar 13, 2017
Dr. Andy McKinley is the leader of the Non-Invasive Brain Stimulation (NIBS) Team in the Cognitive Performance Optimization Section, Applied Neuroscience Branch, Warfighter Interface Division, Human Effectiveness Directorate at Wright-Patterson Air Force Base.
AirmanMagazineOnline Youtube Channel
See Also: Super SEALs: Elite Units Pursue Brain-Stimulating Technologies (Military.com)

Gamma Waves Enhance the Brain’s Immune System to Treat Mice with Alzheimer’s disease.

Foc.us v2 40hz tACS

I was first alerted to the story from a December 7 article in the Guardian, “Strobe lighting provides a flicker of hope in the fight against Alzheimer’s“. Researchers from the Picower Institute for Learning and Memory at MIT, working with (let’s call them) ‘Alzehiemer’s mice’, had discovered that flashing a light at 40hz (on-off at 40 times per second) increased gamma wave oscillations in the brain which led to the reduction of Amyloid beta (think, plaque) through the activation of microglia ‘clean-up’ immune cells. Here, let them explain it!

The paper, Gamma frequency entrainment attenuates amyloid load and modifies microglia makes clear that the light-flickering affected the visual cortex, which makes sense, as the light reaches the brain through the eyes. But wait, thinks I, what about tACS (transcranial Alternating Current Stimulation)… haven’t I seen numerous papers implying the ability to ‘entrain’ brain waves with tACS? What if you could increase 40hz Gamma in other parts of the brain? (Google Scholar Search: transcranial alternating, entrain, gamma)
But then I discovered that Radiolab just covered this exact story and it’s totally amazing! Really a must listen. So fun to hear the researcher’s amazement at this accidental (sort of) discovery!
So what’s with the photo of the Foc.us v2 device set up for a 40hz tACS session? Just that…

More about The Picower Institute for Learning and Memory at MIT

Extreme DIY – Transcranial Electrical Stimulator, Arduino Compatible | quicksilv3rflash

According to Instructables/reddit user quicksilv3rflash…

This device can be used for any kind of human electrical stimulation, such as tDCS, tACS, tRNS, or tVNS. Its hardware, when properly constructed and tested, limits output current such that -2.1mA < output_current < +2.1mA , based on the 2mA safety limit recommended in these published guidelines.

Transcranial Electrical Stimulator, Arduino Compatible
Discussion on Reddit Clear instructions to build a precision computer-controlled tACS/tDCS/tRNS device, <$100
Build a Human Enhancement Device (Basic TDCS Supply)
Simple TACS for Analogue Electromancers