Ethical Issues in Research with Invasive and Non-Invasive Neural Devices in Humans | NIH

Thursday, October 26, 2017. Deep dive (7 hours!) long form, state of the art discussion of neurostimulation by leading experts. More about the Neuroethics Division of the BRAIN Multi-Council Working Group

Sarah Lisanby, director of the division of the National Institute of Mental Health (NIMH) opens the workshop (very interesting, great slides) after introductions at 0:14, Anna Wexler speaks at 2:25.

Permalink to video https://videocast.nih.gov/launch.asp?23553

Roster

  • Co-chair Christine Grady, MSN, PhD, Chief, NIH Department of Bioethics
  • Co-chair Hank Greely, JD, Stanford Law School (MCWG member)
  • Winston Chiong, MD, PhD, University of California, San Francisco
  • James Eberwine, PhD, University of Pennsylvania (MCWG member)
  • Nita Farahany, JD, PhD, Duke School of Law
  • L. Syd M Johnson, PhD, Michigan Technological University
  • Bradley Hyman, MD, PhD, Massachusetts General Hospital (MCWG member)
  • Steve Hyman, MD, Broad Institute
  • Karen Rommelfanger, PhD, Emory University
  • Elba Serrano, PhD, New Mexico State University (MCWG member)
  • Khara Ramos, PhD, NINDS – Neuroethics Division Executive Secretary and NIH liaison

 

Slides From NIMH-sponsored tES Workshop Held September 29th and 30th at NIH

An email from Michelle Pearson at the NIH (because I had signed up for the online version of the workshop) alerted me today to a trove of TES (Transcranial Electric Stimulation) info being made available to us. Presenter slides (in PDF form) from the workshop were available for download. Because the download process was pretty wonky, involving many clicks and declined logins to Dropbox I thought to make them available here as well.

1-lisanby-introductory-remarks Sarah Hollingsworth Lisanby, M.D., NIH
2-rumsey-introduction Judy Rumsey, Ph.D.
3-wassermann-historical-overview Eric Wassermann, M.D., NINDS
4-parra-tdcs-mechanisms Lucas Parra, co-founder of Soterix Medial Inc. @lcparra1
5-frohlich-tacs-mechanisms @FlavioFrohlich, University of North Carolina-Chapel Hill
6-clark-combining-imaging-and-stimulation Vincent P. Clark, PhD Mind Research Network
7-woods-tes-technical-aspects Adam J. Woods, PhD @adamjwoods
8-richardson-blinding Jessica D. Richardson, Ph.D.
9-kappenman-reproducibility Emily S. Kappenman
10-bikson-computational-modeling-design Marom Bikson, CCNY @MaromBikson
11-deng-anatomical-variability-efields Zhi-De Deng, Ph.D., NIH
12-dmochowski-targeted-stimulation-sources Jacek P. Dmochowski, CCNY
13-loo-depression-trials Colleen Loo, Black Dog Institute
14-brunoni-neuropsychiatry-large-trials André R. Brunoni, @abrunoni
15-cohen-motor-learning Leonardo G. Cohen, M.D. NINDS
16-edwards-augmentation-neurorehabilitation Dylan J. Edwards PhD
17-lim-ongoing-trials Kelvin O. Lim, M.D.
18-frohlich-tacs-psychiatry-trials @FrohlichLab
19-charvet_remote-tdcs Leigh Charvet PhD, NYU

Early Torpedo Fish TES Researcher. From the Wassermann Historical Overview slides

Early Torpedo Fish TES Researcher. From the Wassermann Historical Overview slides

Brain-O-Matic – ThePhoenix.com

Stuart Gromley sits hunched over a desk in his bedroom, groping along the skin of his forehead, trying to figure out where to glue the electrodes. The wires lead to a Radio Shack Electronics Learning Lab, a toy covered with knobs, switches, and meters. Even though he’s working with a kiddie lab, Gromley, a 39-year-old network administrator in San Francisco, can’t afford to make mistakes: he’s about to send the current from a nine-volt battery into his own brain.

Gromley’s homemade contraption is modeled on the devices used in some of the top research centers around the world. Called transcranial direct current stimulation (tDCS), the technology works on the principle that even the weak electrical signals generated by a small battery can penetrate the skull and affect hot-button areas on the outer surface of the brain. In the past few years, scholarly research papers have touted tDCS as a non-invasive and safe way to rejigger our thoughts and feelings, and possibly to treat a variety of mental disorders. Most provocatively, researchers at the National Institute of Health have shown that running a small jolt of electricity through the forehead can enhance the verbal abilities of healthy people. That is, tDCS might do more than just alleviate symptoms of disease. It might help make its users a little bit smarter.

via Brain-O-Matic – Lifestyle Features.