Your Body on Brain Doping | OutsideOnline.com

To create the next wave of super-athletes, Red Bull has turned to a novel new treatment: trickling a small electric current through the brain’s motor cortex. Just don’t call it electroshock therapy.

mike day red bull project endurance

Mike Day undergoes physiological testing during Red Bull Project Endurance. Fellow participant Jesse Thomas said the week was “intense, painful, limit pushing, and shocking…literally.”     Photo: Michael Darter/Red Bull

via Your Body on Brain Doping | The Fit List | OutsideOnline.com.

Zapping Your Brain With TDCS Could Help You Lose Weight

Felipe Fregni, an associate professor at Harvard Medical School who was involved with the research, has a theory on why that happened. “The students ingested fewer calories because they could make more rational decisions,” he says.

He says tDCS may have dialed up the activity in the students’ prefrontal cortices—where the stimulation was applied and where they make rational, considered decisions, which in turn dialed down the students’ initial knee-jerk reaction to eat food when they saw it. This makes good sense: The dorsolateral prefrontal cortex is known to be an area of the brain that enables us to inhibit temptation.

“It’s the part of the brain most developed in humans compared to monkeys, and it relates to some of the more advanced abilities we have,” says Roi Cohen Kadosh, a neuropsychologist at the University of Oxford who is another of the leading lights in tDCS research. “It’s involved in learning and working memory, and it’s highly connected to other brain regions, such as ones involved with addictions and rewards, and food is rewarding.”

via Zapping Your Brain With TDCS Could Help You Lose Weight.

The Case for OpenSource DIY Neuroenhancement | Infectious Perspectives

But if a group of neuroscientists who have experience with TDCS built an OpenSource device and explained how to build and use it in a public forum, such as YouTube, then the DIY community would be armed with the necessary knowledge to execute legal, safe, and controlled brain stimulation. This would bypass the necessity of shifting power into the hands of profit-seeking corporations or eavesdropping government agencies, and encourage a self-initiated and self-regulated approach to the direct manipulation of brain states. We manipulate our brain states all the time, actually. This common manipulation is called thinking, and individuals should have as much control of that as possible.

via The Case for OpenSource DIY Neuroenhancement | Infectious Perspectives.

Simple Montage list with electrode placement and research sources. : tDCS

User x0rn just posted this to the tDCS SubReddit. Check original source (link at bottom) for updates.

Simple Montage list with electrode placement and research sources.(self.tDCS)
by x0rn

There seemed to be a lack of cited montage sources. Here is a compiled list:

**NOTE: Here is a link to the 10/20 placement chart. DLPFC (F3) means Dorsolateral Prefrontal Cortex Position F3*

Anode (+) RED Cathode (-) BLACK Target Behavior Study
DLPFC (F3) DLPFC (F4) Decreased depression/ pain / increased organization Smith & Clithero, (2009)
DLPFC (F3) Right shoulder Decreased depression / reduced food alcohol craving Smith & Clithero, (2009)
LPFC (F3) Supra Orbital (Fp2) Improved Mood Vanderhasselt et. al., (2013)
DLPFC (F4) DLPFC (F3) Reduce risk taking Fecteau, et al., (2007)
Mastoid (P10) DLPFC (F4) Increased impulsiveness / Increased present awareness Beeli, et al., (2008), Ledoux, (1996)
Left Orbital (Fp1) DLPFC (F4) Improved social interaction / reduced punishment of unfair behavior Knoch, et al., (2008)
DLPFC(F3) DLPFC (F4) Reduced cigarette, alcohol, junk food craving Fregni, et al., (2007), Boggio et al., (2007) Fregni, et al., (2007)
Orbital PFC (Fp1 and/or Fp2) Shoulder Attention improvement Gladwin, et al., (2012)
Temporal (T4) Temporla(T3) Insight improvement / “Savant Learning” Chi & Snider (2011)
Temporal (T4 & T6) Parietal (P4) Shoulder Improved socialization Sébastien Hétu (20101
Parietal (P4) Parietal (P3) Improved math understating / increased verbal impariment Kadosh (2010)
Occipital (O1, Oz, and or O2) base of neck or CZ Improves visual motor reaction times Anatal & Paulus (2008)
Base of neck Occipital (O1 & O2) Reduced migraine pain Antal (2011)
Temporal (T3) Shoulder Improved audio processing Ladeira, et. al., (2011)
C3 and or C4 Orbital (Fp1 or Fp2) Improved fine motor control /reduced pain oppisite side of anode Lindenberg et al., (2010), Fregni, (2006) Vineset, et. al, (2006)
Supra Orbital (FP1 or Fp2 depending on pain side) Neck (opposite side) Pain reduction /possible increase in impulsiveness Mendonca (2011) Beeli (2008)
Right Temple (F10) Left shoulder Accelerated Learning Kruse (2008) DARPAD
DLPC (F3 &F4) Mastiod (P10 & P9) Theta-tDCS2 Improved sleep Marshal (2011)2

Please share more if you have them. I’ll add to the list.

1 Source article was indirectly talking about using tDCS to map social interactions.

2 The author used theta-tDCS which seems to induce theta waves unlike traditional tDCS.

via Simple Montage list with electrode placement and research sources. : tDCS.

Brilliant for a Day: The (REAL) Science of Brain Enhancing Stimulation | Armed with Science

The Department of Veterans Affairs, in conjunction with the VA in Texas and the Women’s Hospital in Boston, are collaborating with Dr. Weisend and his team to use their tDCS system on service members who are struggling to live with PTSD and traumatic brain injuries.

“The way we approach it is not just simply hoping behavior changes,” Dr. Wesiend says. “What we do is we figure out what the most important thing to change is so that we can effect a person’s life in a positive way. For example, people with PTSD tell me they have terribly disrupted sleep. Traumatic brain injury sufferers may have a completely different problem. It’s like thinking of different disorders as having their own personalities.”

via Brilliant for a Day: The (REAL) Science of Brain Enhancing Stimulation | Armed with Science.

My tDCS Story: A Six Month Retrospective — tDCS Global — Medium

After six month of tDCS focused on my optic nerve and visual cortex combined with visual training, I have had marked improvements to my visual perception, especially in contrast perception and perceiving objects from afar. For example, if I am walking on the sidewalk, and another person is walking in the opposite direction towards me, I would not have been able to notice the other person until they were about 1 meter away. Now, I will notice people from 3 meters away. I can’t see them clearly enough to identify them, but at least I can move out of their way, if they’re in a hurry. Likewise, I can see oncoming traffic from 2–3 times farther away than before, which is very helpful when crossing busy streets. Another example is when I use my computer. I use a large Apple 30” display, and before starting tDCS, I would sit with the monitor about 3 inches from my eyes. As you can imagine, this was not at all comfortable, but I had to do this in order to see the screen clearly. After the first few days of using tDCS, I was able to push my monitor back and sit 6 inches away from it. Within two weeks, I was sitting about 12 inches away. Now, I sit 18 inches away. This is the first time in my life I’ve used a computer at this distance. Similarly, I’m able to use my iPhone at much greater distances than before 6 inches now, compared to 2 inches previously.

via My tDCS Story: A Six Month Retrospective — tDCS Global — Medium.

Quick and Dirty Guide on Transcranial Current Stimulation

What makes tDCS work?
Let us start with the application of DC current and its study at neuronal level. While the electrical current goes through the scalp and cortex it encounters different mediums. Each time it goes through the limit between two mediums it leaves some charge behind. This is what happens when traversing the neuronal membrane, which constitutes the interface between the interior of the neuron and its environment. These charges generate a voltage difference, which makes the resting potential of the membrane either decrease or increase, depending on its sign, i.e. on the current sense. Therefore the neuron is correspondingly either more likely or less likely to fire. When applying an anodal current, the action potential thresholds of pyramidal cells under the anode application area are lowered, meaning that they fire more easily. Therefore this current, and its associated electrical field, is considered excitatory. On the other hand a cathodal current would present an inhibitory effect.
via Quick and Dirty Guide on Transcranial Current Stimulation.

Collected knowledge from a new tDCS convert : tDCS

Well put together summary post from ‘MagicC’ on Reddit includes a few links I hadn’t seen.

I’ve been using the depression montage, and I’m pleased to report that it’s been very effective. I feel much less stressed out and anxious, and I have a calm clarity that I find incredibly heartening. It feels like I have greater freedom of action i.e. I think of more possibilities, instead of getting bogged down in dead ends. I’m experiencing a quieting of my self-destructive inner dialogue, which is improving my mood dramatically. I wasn’t sure what to expect, but so far, I’m very happy with my purchase.

via Collected knowledge from a new tDCS convert : tDCS.

Shockingly Smart: The Physics Behind Brain Stimulation | PhysicsCentral

Contrary to the popular notion of the brain as an organic computer, the signals responsible for most behavior aren’t transmitted purely by electricity. The motion of ions, atoms with either a deficit or surplus of electrons from their neutral state, is responsible for regulating the release of neurotransmitters, the “firing” of the neuron that leads to thought or sensation.

By applying a current in a certain direction, tDCS can effectively increase or decrease electrical polarization, affecting the chance that neurons in a given region of the brain will fire depending on the orientation of the subject’s synapses and whether a positive or negative current is applied. The potential to decrease neuronal activity seems just as important as the potential to increase it by way of medical and psychiatric applications of the technology. Disorders like schizophrenia, for instance, seem to be linked to over-excitability in certain parts of the brain.

via Physics Buzz: Shockingly Smart: The Physics Behind Brain Stimulation.

9-Volt Nirvana – Radiolab

In the last couple years, tDCS has been all over the news. Researchers claim that juicing the brain with just 2 milliamps (think 9-volt battery) can help with everything from learning languages, to quitting smoking, to overcoming depression. We bring Michael Weisend, neuroscientist at Wright State Research Institute, into the studio to tell us how it works (Bonus: you get to hear Jad get his brain zapped). Peter Reiner and Nick Fitz of the University of British Columbia help us think through the consequences of a world where anyone with 20 dollars and access to Radioshack can make their own brain zapper. And finally, Sally tells us about the unexpected after-effects of a day of super-charged sniper training and makes us wonder about world where you can order up a state of mind.

via 9-Volt Nirvana – Radiolab.

BBC – Future – Brain stimulation: The military’s mind-zapping project

Brain imaging suggested that the best way to do this would be to stimulate the motor cortex while the volunteer was doing the task. But McKinley and his team added a twist: after the stimulation, they use tDCS in reverse to inhibit the volunteers’ prefrontal cortex, which is involved in conscious thinking. The day after the stimulation, the volunteers are brought back for re-testing. “The results we’re getting are fantastic,” McKinley says. People getting a hit of both mid-test and inhibitory stimulation did 250% better in their retests, far outperforming those who had received neither. Used in this way, it seems that tDCS can turbo-boost the time it takes for someone to go from being a novice at a task to being an expert.

via BBC – Future – Brain stimulation: The military’s mind-zapping project.

tDCS Treatment with Severe Broca’s Aphasia

From The Aphasia Center at Steps Forward blog.

This treatment has been used thus far to examine naming in aphasia, apraxia treatment, and language recovery. Current studies in Italy have used this treatment for 20 minutes daily for 10 non-consecutive days, showing that clients keep the trained skills weeks to months after training. We use this treatment daily for 4-8 weeks while providing another 4 hours of treatment with great results thus far. It is unknown at this time what the best brain areas are for treatment, how long the best treatment lasts, how long the results last, and the optimum number of treatment sessions. Each person’s brain is set up slightly differently, so stimulating one area may have different effects for different people. This treatment is only offered to intensive program clients at this time since treatment/training must accompany stimulation and our results have all been from intensive clients.

Can current stimulate smarts? | news @ Northeastern

But that skep­ti­cism has only inspired Pavel and his col­leagues, including asso­ciate pro­fessor of 
elec­trical and com­puter engi­neering Deniz Erdogmus, to work even harder on a project aimed
 at exploring their inno­v­a­tive research. They recently received a con­tract to study the
 phe­nom­enon from the Strength­ening Human Adap­tive Rea­soning and Problem-​​solving Pro­gram, known as SHARP. The pro­gram is spon­sored by the Intel­li­gence Advanced Research Projects
 Activity, a gov­ern­ment agency that invests in high-​​risk, high-​​payoff research.

Researchers at Oxford Uni­ver­sity, who are part of the same SHARP team as Erdogmus and 
Pavel, pre­vi­ously demon­strated that applying tran­scra­nial cur­rent stim­u­la­tion helps chil­dren 
per­form better on math­e­matics prob­lems. “The ques­tion is how well does this method work for 
improving fluid intel­li­gence,” said Pavel, who holds joint appoint­ments in the Col­lege of 
Com­puter and Infor­ma­tion Sci­ence and the Bouvé Col­lege of Health Sci­ence.

via Can current stimulate smarts? | news @ Northeastern.

Hacking The Brain With Electricity: Don’t Try This At Home | NPR

Jared Seehafer wearing his homemade tDCS device.

Jared Seehafer wearing his homemade tDCS device.

Courtesy of Amy Standen

That’s what Jared Seehafer did. He’s a 28-year-old medical device consultant in San Francisco who heads the group.

He made his own tDCS machine using an elastic headband and a couple of electrodes. It’s powered by a 9-volt battery and produces 1 to 2 milliamps of electricity, approximately what it takes to light one small LED bulb.

via Hacking The Brain With Electricity: Don’t Try This At Home : Shots – Health News : NPR.

Scientists find switch for people to control their dreams – Vox

HatTip to Jay who is working on a tDCS/lucid dreaming project of his own.
tACS is transcranial alternating current, significantly more complex, from what I gather than tDCS. But perhaps a DIY tACS device set to 40 Hz specifically won’t be out of the question for DIYers. As someone who spent months (unsuccessfully) doing lucid dreaming exercises I certainly would welcome the opportunity to experience lucid dreaming.

The new dream study (paywall), which was published May 11 in Nature Neuroscience, used a far less invasive method: electrodes temporarily placed at strategic locations on the scalp. The research involved 24 volunteers with no history of lucid dreaming. The subjects went to sleep and eventually dreamed. Then, researchers turned on a 30-second-long electrical signal and then woke them up and asked them about their experiences. It turned out that a 40 Hz stimulation induced lucid dreams 77 percent of the time.

You can’t objectively measure a dream, though. So how did researchers know that the subjects weren’t just making it up? For one, the electrical stimulation was gentle enough that people couldn’t feel it, and some people were in a control group that had electrodes that never got turned on. Also, the study was double-blind: neither the volunteers nor the people who interviewed them were told who had what kind of stimulation. So it does seem that the effects were real.

via Scientists find switch for people to control their dreams – Vox.