Hooking up: zapping your brain

Katie, 23, has suffered from anxiety and depression since she was 18. When her boyfriend Lee told her about transcranial directcurrent stimulation (tDCS), a form of neurostimulation which involves administering a low level of electrical current to the brain, she was sceptical. But Lee had heard that it could help people with mood disorders and wondered if she might benefit from it.

“The first time, I freaked out,” she remembers. “I thought, ‘I can’t cope with putting electrical stimulations in my brain.’ Lee put this machine on and, it’s difficult to explain, but, everything went empty in a good way. I can’t remember if I’ve ever felt like that. I felt relaxed and chilled inside. It was a mad sensation and an out-of-body experience.”

She’d tried anti-depressants in the past but found they didn’t work for her. Now she uses the kit regularly. “It’s improved my life and improved my mind,” she says.

Source: Hooking up: zapping your brain

Noninvasive brain stimulator may ease Parkinson’s symptoms | JHU

The students were referred to Yousef Salimpour, a Johns Hopkins Medicine postdoctoral research associate who has been studying a noninvasive Parkinson’s therapy called transcranial direct current stimulation. In this painless treatment, low-level current is passed through two electrodes placed over the head to tweak the electrical activity in specific areas of the brain. The technique can be used to excite or inhibit these nerve cells. The treatment is still considered experimental, but it has attracted much attention because it does not require surgery and is inexpensive, safe and relatively easy to administer without any side effects.

Source: https://hub.jhu.edu/2015/06/10/stimband-brain-stimulator

Transcranial direct current stimulation: before, during, or after motor training?

The ‘online’ (stimulation during training) vs. ‘offline’ (stimulation prior to or after training) question is addressed here in this study I only have the abstract for. But in this case “These data suggest that tDCS performed before – not during or after – promotes optimization of motor training-induced plasticity.” Keep in mind that, there are many (montage, kind of test/training) variables and that other studies have shown advantages to online training.

Noninvasive brain stimulation has recently been used to augment motor training-induced plasticity. However, the exact time during which noninvasive brain stimulation can be combined with motor therapy to maximize neuroplasticity and behavioral changes is unknown. We conducted a randomized sham-controlled crossover trial to examine when (before, during, or after training) transcranial direct current stimulation (tDCS) should be applied to best reinforce motor training-induced plasticity in 12 healthy right-handed participants (mean age: 21.8±1.6) who underwent active or sham tDCS combined with motor training. Transcranial magnetic stimulation-elicited motor-evoked potentials from the right first dorsal interosseous muscle were recorded before (baseline) and immediately after each session. The training task comprised four practice trials – 3 min each (30 s pause between trials) – of repetitive finger movements (thumb abduction/adduction) with the right hand. Anodal tDCS (1 mA, 13 min, on the motor primary cortex) was applied before, during, and after the training. Compared with baseline motor-evoked potentials and the sham condition, tDCS that was applied before, but not during or after, the motor task enhanced corticospinal excitability. These data suggest that tDCS performed before – not during or after – promotes optimization of motor training-induced plasticity.

Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community

Well done! Anita Jwa’s study of the DIY tDCS community is published. I would think this very useful to policy makers. I was only surprised by a few of her findings. Links below to full paper.

This study is the first empirical attempt to investigate the DIY tDCS user community. A questionnaire survey of DIY users, interviews with some active power users, and a content analysis of web postings on tDCS showed distinctive demographic characteristics of the DIY users, ambiguities and mistaken assumptions around the current state and future prospects of the DIY use of tDCS, mixed use of tDCS for both treatment and cognitive enhancement, the existence of an active self-regulating system in the community, and users’ demands for official guidelines and their concerns about government regulations on tDCS.

Source: Early adopters of the magical thinking cap: a study on do-it-yourself (DIY) transcranial direct current stimulation (tDCS) user community

Brain Stimulation and Imaging Meeting June 12-13 2015

Some very interesting abstracts coming out around the upcoming BrainStim conference.

Dr. Giulio Ruffini, “Transcranial Current Stimulation: Going Multifocal”
“…I will describe a new class of devices using multi electrode montages and small, EEG-compatible electrodes, complemented by advanced biophysical models.”

Dr. Marom Bikson, “Targeting transcranial Electrical Stimulation using EEG: The scalp space approach”
“…Next, how to optimize tES based on either evoked or spontaneous EEG recording is discussed including a novel “scalp space” approach which requires no source localization and no computational modeling.”

I see also that the The Neuroelectrics Team will be demonstrating their “latest wireless EEG (Enobio) and tCS (StarStim) technology as well as our latest StarStim Research Home Kit.

Scientists retrieve lost memories using optogenetics

I’m exposing my bias here, which is the hope that tDCS will be found to facilitate memory retrieval. This study, in mice, retrieved dormant memories using light (optogenetics) to activate cells used in memory formation. Recent studies suggest that memories are formed within a synaptic network, parts of which extend to areas of the brain more frequently targeted by tDCS. Probably closest to the research I’d like to see done (that I’m aware of) was reported in 2009, “Where Are Old Memories Stored in the Brain?“. I imagine a study where early memory, triggered by photos and recollections, are imaged using fMRI and that later, those same areas are targeted using tDCS. In the study reported on above, Medial Temporal Lobe Activity during Retrieval of Semantic Memory Is Related to the Age of the Memory, researchers concluded that older memories associated with regions in the frontal lobe, temporal lobe, and parietal lobe. (Though seems inconclusive as to whether memories are ‘stored’ there… “An additional way to understand the increasing involvement of some cortical areas, especially frontal cortex, as time passes is that older memories require more strategic, effortful search.”) Now, back to the post title article…

The researchers then attempted to discover what happens to memories without this consolidation process. By administering a compound called anisomycin, which blocks protein synthesis within neurons, immediately after mice had formed a new memory, the researchers were able to prevent the synapses from strengthening.

When they returned one day later and attempted to reactivate the memory using an emotional trigger, they could find no trace of it. “So even though the engram cells are there, without protein synthesis those cell synapses are not strengthened, and the memory is lost,” Tonegawa says.

But startlingly, when the researchers then reactivated the protein synthesis-blocked engram cells using optogenetic tools, they found that the mice exhibited all the signs of recalling the memory in full.

“If you test memory recall with natural recall triggers in an anisomycin-treated animal, it will be amnesiac, you cannot induce memory recall,” Tonegawa says. “But if you go directly to the putative engram-bearing cells and activate them with light, you can restore the memory, despite the fact that there has been no LTP.”

Source: Scientists retrieve lost memories using optogenetics
See Also: Neuroanatomy of memory
Gone But Not Forgotten? The Mystery Behind Infant Memories
The Hippocampus and episodic memory
(video)
Neuron Basics (video)

Time to Take Another Look At foc.us tDCS and more | SpeakWisdom


It’s a Software World Now!
If you purchase a V2 (or own one now), you may wish to update its firmware periodically to take advantage of new features. Here are some key steps:

  1. Go to the foc.us web site and create an account: https://www.foc.us/customer/account/login/
  2. Log in with the account
  3. Connect your V2 doc to your capable PC (or Mac)
  4. On the left of your screen (once logged in), select “My Downloadable Products”
  5. Click the “Microsoft Software” (or Mac) download button and install
  6. Run the installed application and allow it to check and upgrade your V2 to the latest firmware

Source: Time to Take Another Look At foc.us tDCS and more | SpeakWisdom

Here’s What Zapping Your Brain with Electricity Feels Like | LiveScience

Interesting to note that Michael Weisend is now associated with San Francisco based company Rio Grande Neurosciences.

The current was set to 2 milliamps, about 1,000 times less than the electrical current that flows through a typical iPad charger. But only about 1/50th of that current makes it through the skull to the brain, Weisend said. The stimulation, which lasted for 10 minutes, was aimed at my right inferior frontal cortex and the right anterior temporal lobe, which are brain areas thought to be important for learning. If this were a real experiment, Weisend would have scanned my brain first to determine the optimal placement for the electrode, but in my case, he made an approximation.

I turned the electricity on myself, and the first thing I noticed was the mild stinging where the electrode attached to my head. Weisend assured me this was normal, but said if the sensation continued, he would turn it off and try to get a better connection. Next I noticed a slight taste of metal in my mouth, a common side effect of tDCS, according to Weisend.

Source: LiveScience.com

Spark of Genius? Awakening a Better Brain | World Science Festival

tDCSworldScienceFestival

Video: http://livestream.com/WorldScienceFestival/events/4063286/videos/88471585
Source: http://www.worldsciencefestival.com/programs/spark-genius-electrical-stimulation-brain/

OPENING CREATED BY: Blanca Li
DATE: Wednesday, May 27, 2015
TIME: 8:00 PM-9:30 PM
VENUE: NYU Skirball Center for the Performing Arts
How far would you go to improve your focus, memory, or even learning ability? Would you be willing to strap on headgear that delivers electrical shocks to targeted areas of your brain? You may soon have that option. It’s called transcranial direct current stimulation, and while variations of the technique are already known to help depression patients, it’s currently being tested on soldiers, and used by gamers, students, and others looking for a cognitive edge. Does it work? Can carefully directed electrical stimulation improve cognitive function? What are potential long-term effects? And how should it be regulated?

Functional role of frontal alpha oscillations in creativity

Following up on the recent Flavio Frohlich paper. Some details here in the abstract about how the boost in creativity was achieved.

Frohlich-tACS

Creativity, the ability to produce innovative ideas, is a key higher-order cognitive function that is poorly understood. At the level of macroscopic cortical network dynamics, recent electroencephalography (EEG) data suggests that cortical oscillations in the alpha frequency band (8–12 Hz) are correlated with creative thinking. However, whether alpha oscillations play a functional role in creativity has remained unknown. Here we show that creativity is increased by enhancing alpha power using 10 Hz transcranial alternating current stimulation (10 Hz-tACS) of the frontal cortex. In a study of 20 healthy participants with a randomized, balanced cross-over design, we found a significant improvement of 7.4% in the Creativity Index measured by the Torrance Test of Creative Thinking (TTCT), a comprehensive and most frequently used assay of creative potential and strengths. In a second similar study with 20 subjects, 40 Hz-tACS was used instead of 10 Hz-tACS to rule out a general “electrical stimulation” effect. No significant change in the Creativity Index was found for such frontal 40 Hz stimulation. Our results suggest that alpha activity in frontal brain areas is selectively involved in creativity; this enhancement represents the first demonstration of specific neuronal dynamics that drive creativity and can be modulated by non-invasive brain stimulation. Our findings agree with the model that alpha recruitment increases with internal processing demands and is involved in inhibitory top-down control, which is an important requirement for creative ideation.

There’s a paywall to the full paper, but Kurzweil.net has the details.
Alpha-rhythm brain stimulation shown to boost creativity

Does tDCS accelerate learning safely? – Dr. Michael Weisend | The Quantified Body

Excellent! A full hour with Dr. Wesiend. Haven’t listened yet but guaranteed to be the latest info in our understanding of tDCS. We met Dr. Weisend earlier in podcast #4,

Recently, transcranial direct current stimulation (tDCS) or the non-invasive targeting of weak direct current (DC) to specific brain regions has received media attention. Among the scientific research community, tDCS has been a subject of great interest owing to its usage ease, relative inexpensiveness, and encouraging research results on a range of functions. Studies have seen tDCS accelerate learning, reduce symptoms of dementia, and improve attention in those with Attention Deficit Disorder (ADD). Understandably, a coinciding rise in the DIY community has also prompted an increase in consumer devices available for home use in hopes of mimicking tDCS’s potential neuroenhancement abilities.

Source: Does tDCS accelerate learning safely? – Dr. Michael Weisend | The Quantified Body

Make New Memories But Keep the Old, With a Little Help From Electrodes | Smithsonian

Scarce on details but certainly I will be keeping tabs on this.

Deep sleep, a period that’s known as vital for memory formation, becomes rarer as people age, waning more and more after individuals hit their mid-30s. By attaching two electrodes to a person’s scalp, Walker can direct a current into the prefrontal area and simulate the slow waves of deep sleep while the wearer slumbers.
The technique is called transcranial direct-current stimulation (tDCS), and while the equipment to do it is commercially available, it is not FDA approved for use on medical conditions. The devices in their current form aren’t intelligent enough to know when a wearer is in deep non-rapid eye movement (NREM) sleep, and so they aren’t able to start stimulating in that sleep stage on their own and sync up with the brain’s waves. “At present, we scientists need to do this in a sleep lab,” says Walker. “We have to measure someone’s sleep, and then switch the stimulator on at the desired stimulating rhythm to have a beneficial effect.” That said, he believes in five to eight years these issues will be resolved, and these devices could help those with Alzheimer’s, dementia, insomnia, depression and anxiety.

Source: Make New Memories But Keep the Old, With a Little Help From Electrodes | Innovation | Smithsonian